Log in

Thermal oxidation etched carbon fiber aerogels with hierarchical pore structure as high-performance oil adsorbent

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel thermal oxidation etching (TOE) strategy was employed here to increase the voids of aerogels. The etched carbon fiber aerogels (ECFAs) have exhibited a network structure constituted by fibers, in which macropores ranging from 0.4 to 5 μm could be observed. Moreover, ECFAs also showed wide distributions in meso/micropores, which further proved that the ECFAs owned a hierarchical pore structure. Meanwhile, porosity was used to measure the space for oil storage inside the ECFAs. Among them, the ECFA-25 (ECFA that was etched for 25 min) had the highest porosity of 99.63%. It also showed the best oil adsorption performance (64.75 g/g), more than twice that of the unetched carbon fiber aerogels. This promising TOE strategy exhibits significant potential as a guidance to obtain efficient sorbents in oil adsorption.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

Data to this article will be made available on request.

References

  1. Peng M, Zhu Y, Li H, He K, Zeng G, Chen A, Huang Z, Huang T, Yuan L, Chen G (2019) Chem Eng J 373:213. https://doi.org/10.1016/j.cej.2019.05.013

    Article  CAS  Google Scholar 

  2. Yang H, Sun J, Zhang Y, Xue Q, **a S (2021) Ceram Int 47:33827. https://doi.org/10.1016/j.ceramint.2021.08.294

    Article  CAS  Google Scholar 

  3. Zhang D, ** XZ, Huang T, Zhang N, Qi XD, Yang JH, Zhou ZW, Wang Y (2019) ACS Appl Mater Interfaces 11:5073. https://doi.org/10.1021/acsami.8b19523

    Article  CAS  Google Scholar 

  4. Huang J, Liu H, Chen S, Ding C (2017) Mater Sci Eng, B 226:141. https://doi.org/10.1016/j.mseb.2017.09.014

    Article  CAS  Google Scholar 

  5. Lin J, Tian F, Shang Y, Wang F, Ding B, Yu J (2012) Nanoscale 4:5316. https://doi.org/10.1039/c2nr31515g

    Article  CAS  Google Scholar 

  6. Li N, Qin B, Kang H, Cai N, Huang S, **ao Q (2021) Nanoscale 13:13873. https://doi.org/10.1039/d1nr03392a

    Article  CAS  Google Scholar 

  7. Huang S, Gao Y, Zhang Y, Chen S, **ao Q (2019) Mater Lett 240:253. https://doi.org/10.1016/j.matlet.2019.01.013

    Article  CAS  Google Scholar 

  8. Qin B, Li Y, Kang H, Huang S, **ao Q (2022) J Mater Sci 57:3211. https://doi.org/10.1007/s10853-021-06810-4

    Article  CAS  Google Scholar 

  9. Wu X, Wang Y, Zhong R, Li B (2021) Diamond Related Mater 116:108447. https://doi.org/10.1016/j.diamond.2021.108447

    Article  CAS  Google Scholar 

  10. Klepel O, Utgenannt S, Vormelchert C, König M, Meißner A, Hansen F, Bölte JH, Sieber T, Heinemann R, Bron M, Rokicińska A, Jarczewski S, Kuśtrowski P (2021). Microporous Mesoporous Mater. https://doi.org/10.1016/j.micromeso.2021.111257

    Article  Google Scholar 

  11. Gupta A, Pandey V, Yadav MK, Mohanta K, Majhi MR (2022) Ceram Int 48:35750. https://doi.org/10.1016/j.ceramint.2022.07.098

    Article  CAS  Google Scholar 

  12. Aydıncak K, Yumak T, Sınağ A, Esen B (2012) Ind Eng Chem Res 51:9145. https://doi.org/10.1021/ie301236h

    Article  CAS  Google Scholar 

  13. Li J, Xu C, Zhang Y, Wang R, Zha F, She H (2016) J Mater Chem A 4:15546. https://doi.org/10.1039/c6ta07535e

    Article  CAS  Google Scholar 

  14. Mulyadi A, Zhang Z, Deng Y (2016) ACS Appl Mater Interfaces 8:2732. https://doi.org/10.1021/acsami.5b10985

    Article  CAS  Google Scholar 

  15. Li Z, Wang B, Qin X, Wang Y, Liu C, Shao Q, Wang N, Zhang J, Wang Z, Shen C, Guo Z (2018) ACS Sustain Chem Eng 6:13747. https://doi.org/10.1021/acssuschemeng.8b01637

    Article  CAS  Google Scholar 

  16. Liu F, Ma M, Zang D, Gao Z, Wang C (2014) Carbohydr Polym 103:480. https://doi.org/10.1016/j.carbpol.2013.12.022

    Article  CAS  Google Scholar 

  17. Wang H, Wang E, Liu Z, Gao D, Yuan R, Sun L, Zhu Y (2015) J Mater Chem A 3:266. https://doi.org/10.1039/c4ta03945a

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

HK: Data curation, Validation, and Writing-review & editing; BQ: Writing-original draft, Formal analysis; JL: Visualization; YL: Investigation; SH: Resources; QX: Conceptualization, Writing-review & editing.

Corresponding author

Correspondence to Qi **ao.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Handling Editor: Stephen Eichhorn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, H., Qin, B., Long, J. et al. Thermal oxidation etched carbon fiber aerogels with hierarchical pore structure as high-performance oil adsorbent. J Mater Sci 58, 12481–12489 (2023). https://doi.org/10.1007/s10853-023-08804-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08804-w

Navigation