Log in

Porous anhydrous CuF2 with a micro-nano-hierarchical structure as high-performance cathode material for Li-ion battery

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, anhydrous porous CuF2 with a micro-nano-hierarchical structure has been successfully fabricated via a precipitation method and a following solid-state reaction process. Scanning electron microscopy, transmission electron microscopy and N2 adsorption–desorption isotherms results confirm that the prepared porous CuF2 bulks are composed of loosely packed nanoparticles with a size range mainly between 30 and 50 nm, forming a micro-nano-hierarchical structure and possessing a large specific Brunauer–Emmett–Teller surface area of 24.93 m2 g−1. The porous CuF2 exhibits an outstanding initial discharge capability of 523 mAh g−1 at 0.1C and a superior rate capacity of 403 mAh g−1 at 5C with a cutoff voltage of 1.5 V versus Li/Li+. Moreover, electrochemical impedance spectroscopy, cyclic voltammetry and galvanostatic intermittent titration technique results verify porous structure can decrease the charge transfer resistance and boost the Li+ diffusion coefficient in CuF2. The method proposed in this work could be potentially used to synthesize other metal fluorides for high-performance lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

All data can be obtained from the corresponding author upon reasonable request.

Code availability

Not applicable.

References

  1. Shi X, Zheng T, **ong J, Zhu B, Cheng YJ, **a Y (2021) Stable electrode/electrolyte interface for high-voltage NCM 523 cathode constructed by synergistic positive and passive approaches. ACS Appl Mater Interfaces 13:57107–57117. https://doi.org/10.1021/acsami.1c15690

    Article  CAS  Google Scholar 

  2. Zhu Z, Yu D, Shi Z, Gao R, **ao X, Waluyo I, Ge M, Dong Y, Xue W, Xu G, Lee WK, Hunt A, Li J (2020) Gradient-morph LiCoO2 single crystals with stabilized energy density above 3400 Wh L−1. Energy Environ Sci 13:1865–1878. https://doi.org/10.1039/d0ee00231c

    Article  CAS  Google Scholar 

  3. Alsamet MA, Burgaz E (2021) Synthesis and characterization of nano-sized LiFePO4 by using consecutive combination of sol-gel and hydrothermal methods. Electrochim Acta 367:137530. https://doi.org/10.1016/j.electacta.2020.137530

    Article  CAS  Google Scholar 

  4. Wang F, Robert R, Chernova NA, Pereira N, Omenya F, Badway F, Hua X, Ruotolo M, Zhang R, Wu L, Volkov V, Su D, Key B, Whittingham MS, Grey CP, Amatucci GG, Zhu Y, Graetz J (2011) Conversion reaction mechanisms in lithium ion batteries: study of the binary metal fluoride electrodes. J Am Chem Soc 133:18828–18836. https://doi.org/10.1021/ja206268a

    Article  CAS  Google Scholar 

  5. Cheng J, Pan Y, Zhu J, Li Z, Pan J, Ma Z (2014) Hybrid network CuS monolith cathode materials synthesized via facile in situ melt-diffusion for Li-ion batteries. J Power Sources 257:192–197. https://doi.org/10.1016/j.jpowsour.2014.01.124

    Article  CAS  Google Scholar 

  6. Li W, Bi Z, Zhang W, Wang J, Rajagopalan R, Wang Q, Zhang D, Li Z, Wang H, Wang B (2021) Advanced cathodes for potassium-ion batteries with layered transition metal oxides: a review. J Mater Chem A 9:8221–8247. https://doi.org/10.1039/D0TA12129K

    Article  CAS  Google Scholar 

  7. Zhang X, Zhang G, Wang S, Li S, Jiao S (2018) Porous CuO microsphere architectures as high-performance cathode materials for aluminum-ion batteries. J Mater Chem A 6:3084–3090. https://doi.org/10.1039/C7TA10632G

    Article  CAS  Google Scholar 

  8. Wang F, Kim SW, Seo DH, Kang K, Wang L, Su D, Vajo J, Wang J, Graetz J (2015) Ternary metal fluorides as high-energy cathodes with low cycling hysteresis. Nat Commun 6:1–9. https://doi.org/10.1038/ncomms7668

    Article  CAS  Google Scholar 

  9. Hua X, Robert R, Du LS, Wiaderek KM, Leskes M, Chapman KW, Chupas PJ, Grey CP (2014) Comprehensive study of the CuF2 conversion reaction mechanism in a lithium ion battery. J Phys Chem C 118:15169–15184. https://doi.org/10.1021/jp503902z

    Article  CAS  Google Scholar 

  10. Miller C, Botana AS (2020) Cupratelike electronic and magnetic properties of layered transition-metal difluorides from first-principles calculations. Phys Rev B 101:195116. https://doi.org/10.1103/PhysRevB.101.195116

    Article  CAS  Google Scholar 

  11. Seo JK, Cho HM, Takahara K, Chapman KW, Borkiewicz OJ, Sina M, Shirley Meng Y (2017) Revisiting the conversion reaction voltage and the reversibility of the CuF2 electrode in Li-ion batteries. Nano Res 10:4232–4244. https://doi.org/10.1007/s12274-016-1365-6

    Article  CAS  Google Scholar 

  12. Chun J, Jo C, Sahgong S, Kim MG, Lim E, Kim DH, Hwang J, Kang E, Ryu KA, Jung YS, Kim Y, Lee J (2016) Ammonium fluoride mediated synthesis of anhydrous metal fluoride–mesoporous carbon nanocomposites for high-performance lithium ion battery cathodes. ACS Appl Mater Interfaces 8:35180–35190. https://doi.org/10.1021/acsami.6b10641

    Article  CAS  Google Scholar 

  13. Ji E, Huang J, Yu Z, Hu Q, Liu H, Lai C, Yuan Z (2022) Electrochemical characterization of CuF2/CNTs cathode materials prepared by a coprecipitation method. Funct Mater Lett 15:2251036. https://doi.org/10.1142/S1793604722510365

    Article  CAS  Google Scholar 

  14. Song H, Yang G, Cui H, Wang C (2015) Honeycomb-like porous iron fluoride hybrid nanostructures: excellent Li-storage properties and investigation of the multi-electron reversible conversion reaction mechanism. J Mater Chem A 3:19832–19841. https://doi.org/10.1039/C5TA04900H

    Article  CAS  Google Scholar 

  15. Lin J, Chen S, Zhu L, Yuan Z, Liu J (2020) Soft-template fabrication of hierarchical nanoparticle iron fluoride as high-capacity cathode materials for Li-ion batteries. Electrochim Acta 364:137293. https://doi.org/10.1016/j.electacta.2020.137293

    Article  CAS  Google Scholar 

  16. Long Z, Hu W, Liu L, Qiu G, Qiao W, Guan X, Qiu X (2015) Mesoporous iron trifluoride microspheres as cathode materials for Li-ion batteries. Electrochim Acta 151:355–362. https://doi.org/10.1016/j.electacta.2014.11.029

    Article  CAS  Google Scholar 

  17. Li Y, Yao F, Cao Y, Yang H, Feng Y, Feng W (2017) The mediated synthesis of FeF3 nanocrystals through (NH4)3FeF6 precursors as the cathode material for high power lithium ion batteries. Electrochim Acta 253:545–553. https://doi.org/10.1016/j.electacta.2017.09.081

    Article  CAS  Google Scholar 

  18. Li L, Meng F, ** S (2012) High-capacity lithium-ion battery conversion cathodes based on iron fluoride nanowires and insights into the conversion mechanism. Nano Lett 12:6030–6037. https://doi.org/10.1021/nl303630p

    Article  CAS  Google Scholar 

  19. Chu Q, **ng Z, Tian J, Ren X, Asiri AM, Al-Youbi AO, Alamry KA, Sun X (2013) Facile preparation of porous FeF3 nanospheres as cathode materials for rechargeable lithium-ion batteries. J Power Sources 236:188–191. https://doi.org/10.1016/j.jpowsour.2013.02.026

    Article  CAS  Google Scholar 

  20. Sun H, Zhou H, Xu Z, Ding J, Yang J, Zhou X (2017) Preparation of anhydrous iron fluoride with porous fusiform structure and its application for Li-ion batteries. Microporous Mesoporous Mater 253:10–17. https://doi.org/10.1016/j.jpowsour.2013.02.026

    Article  CAS  Google Scholar 

  21. Krahl T, Marroquin Winkelmann F, Martin A, Pinna N, Kemnitz E (2018) Novel synthesis of anhydrous and hydroxylated CuF2 nanoparticles and their potential for lithium ion batteries. Chem A Eur J 24:7177–7187. https://doi.org/10.1002/chem.201800207

    Article  CAS  Google Scholar 

  22. Jimenez-Lopez A, Rodriguez-Castellon E, Olivera-Pastor P, Maireles-Torres P, Tomlinson AAG, Jones DJ, Roziere J (1993) Layered basic copper anion exchangers: chemical characterisation and X-ray absorption study. J Mater Chem 3:303–307. https://doi.org/10.1039/JM9930300303

    Article  CAS  Google Scholar 

  23. Masciocchi N, Sironi A (1997) The contribution of powder diffraction methods to structural co-ordination chemistry. J Chem Soc Dalton Trans. https://doi.org/10.1039/a704671e

    Article  Google Scholar 

  24. Troyanov SI, Morozov IV, Korenev YM (1993) The synthesis and crystal structure of ammonium fluorocuprates NH4CuF3 and (NH4)2CuF4. Russ J Inorg Chem 38:909–913. https://doi.org/10.1002/chin.199352035

    Article  Google Scholar 

  25. Taylor JC, Wilson PW (1974) The structures of fluorides VI. Precise structural parameters in copper difluoride by neutron diffraction. J Less Common Metals 34:257–259. https://doi.org/10.1016/0022-5088(74)90166-0

    Article  CAS  Google Scholar 

  26. Omenya F, Zagarella NJ, Rana J, Zhang H, Siu C, Zhou H, Wen B, Chernova A, Piper LFJ, Zhou G, Whittingham MS (2019) Intrinsic challenges to the electrochemical reversibility of the high energy density copper (II) fluoride cathode material. ACS Appl Energy Mater 2:5243–5253. https://doi.org/10.1021/acsaem.9b00938

    Article  CAS  Google Scholar 

  27. Badway F, Mansour AN, Pereira N, Al-Sharab JF, Cosandey F, Plitz I, Amatucci GG (2007) Structure and electrochemistry of copper fluoride nanocomposites utilizing mixed conducting matrices. Chem Mater 19:4129–4141. https://doi.org/10.1021/cm070421g

    Article  CAS  Google Scholar 

  28. Liu YT, Liu S, Li GR, Gao XP (2021) Strategy of enhancing the volumetric energy density for lithium-sulfur batteries. Adv Mater 33:2003955. https://doi.org/10.1002/adma.202003955

    Article  CAS  Google Scholar 

  29. **ng W, Li F, Yan ZF, Lu GQ (2004) Synthesis and electrochemical properties of mesoporous nickel oxide. J Power Sources 134:324–330. https://doi.org/10.1016/j.jpowsour.2004.03.038

    Article  CAS  Google Scholar 

  30. Yin M, Zhao D, Feng C, Zhou W, Jiao Q, Feng X, Wang S, Zhao Y, Li H, Feng T (2020) Construction of porous Co9S8 hollow boxes with double open ends toward high-performance half/full sodium-ion batteries. ACS Sustain Chem Eng 8:6305–6314. https://doi.org/10.1021/acssuschemeng.9b07831

    Article  CAS  Google Scholar 

  31. Weppner W, Huggins RA (1977) Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb. J Electrochem Soc 124:1569. https://doi.org/10.1149/1.2133112

    Article  CAS  Google Scholar 

  32. Ma R, Wang M, Tao P, Wang Y, Cao C, Shan G, Yang S, ** L, Chung JCY, Lu Z (2013) Fabrication of FeF3 nanocrystals dispersed into a porous carbon matrix as a high performance cathode material for lithium ion batteries. J Mater Chem A 1:15060–15067. https://doi.org/10.1039/C3TA13086J

    Article  CAS  Google Scholar 

  33. **a J, Wang Z, Rodrig ND, Nan B, Zhang J, Zhang W, Lucht BL, Yang C, Wang C (2022) Super-reversible CuF2 cathodes enabled by Cu2+-oordinated alginate. Adv Mater 34:2205229. https://doi.org/10.1002/adma.202205229

    Article  CAS  Google Scholar 

  34. Skinner WM, Prestidge CA, Smart RSC (1996) Irradiation effects during XPS studies of Cu(II) activation of zinc sulphide. Surf Interface Anal 24:620–626. https://doi.org/10.1002/(SICI)1096-9918(19960916)24:9%3c620::AID-SIA151%3e3.0.CO;2-Y

    Article  CAS  Google Scholar 

  35. Eveillard F, Leroux F, Batisse N, Delbègue D, Guérin K (2022) Copper-iron ternary metal fluorides from multi-metallic template fluorination and their first use as cathode in solid state Li-batteries. J Solid State Chem 310:123031. https://doi.org/10.1016/j.jssc.2022.123031

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of China (Grant No. 51790490).

Author information

Authors and Affiliations

Authors

Contributions

QH contributed to material preparation, data collection, analysis and writing—original draft. ZY contributed to writing—reviewing and editing. LT, YZ, HL, CL and ZY contributed to discussion and data curation.

Corresponding author

Correspondence to Zhiyong Yu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest in preparing this article.

Ethical approval

Ethical approval was not required for this research.

Additional information

Handling Editor: Naiqin Zhao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2067 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Q., Yu, Z., Tian, L. et al. Porous anhydrous CuF2 with a micro-nano-hierarchical structure as high-performance cathode material for Li-ion battery. J Mater Sci 58, 10120–10130 (2023). https://doi.org/10.1007/s10853-023-08668-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08668-0

Navigation