Log in

Dynamic shock wave-induced switchable order to disorder states of single crystal of sulfamic acid: a combined study of X-ray and Raman spectroscopy

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Experimentation under dynamic shocked conditions has attained the status of one of the appealing classes of methods for identifying the functional materials whose degree of long-range order is significantly altered. In the present work, we have systematically investigated the dynamic impact of shock waves on the technologically important single crystal of sulfamic acid at various numbers of shocks exposed and the results have been analyzed by X-ray diffraction and Raman spectroscopic profiles. Based on the obtained results, the shocked phase profile with respect to the number of shock pulses is of the sequential order (Pbca)–disorder–order (Pbca)–disorder–order (Pbca) for the 0, 1, 2, 3 and 4 shocks, respectively. The observed switchable phase transitions of the titled crystal after shocked conditions might be due to the rotational order–disorder transformation that is followed by the molecular symmetry changes of NH3 and SO3 trigonal units for which the possible macroscopic mechanism is provided. The observed switchable phase transitions occurring between order and disorder states may be an interesting asset for molecular electronic devices such as the molecular switches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

The data in my manuscript can be obtained from the corresponding author.

References

  1. Zhou X, Miao Y-R, Shaw WL, Suslick KS, Dlott DD (2019) J Am Chem Soc 141:2220–2223

    Article  CAS  Google Scholar 

  2. Leiserowitz L, Schmidt GMJ (1966) J Phys Chem Solids 27:1453–1457

    Article  CAS  Google Scholar 

  3. Winey JM, Zimmerman K, Dreger Z, Gupta YM (2020) J Phys Chem A 124:6521–6527

    Article  CAS  Google Scholar 

  4. Sivakumar A, Shailaja P, Nandhini M, Sahaya Jude Dhas S, Suresh Kumar R, Almansour AI, Arumugam N, Chakraborty S, Martin Britto Dhas SA (2022) Ceram Inter 48:8457–8465

    Article  CAS  Google Scholar 

  5. Sivakumar A, Sahaya Jude Dhas S, SureshKumar R, Almansour AI, Murugesan M, Martin Britto Dhas SA (2022) Appl Phys A 128:291

    Article  CAS  Google Scholar 

  6. Liu Z, Zhang L, Sun D (2020) Chem Commun 56:9416–9432

    Article  CAS  Google Scholar 

  7. Zhou L, Shi P-P, Zheng X, Geng F-J, Ye Q, Fu D-W (2018) Chem Commun 54:13111–13114

    Article  CAS  Google Scholar 

  8. Liu G, Liu J, Sun Z, Zhang Z, Chang L, Wang J, Tao X, Zhang Q (2016) Inorg Chem 55:8025–8030

    Article  CAS  Google Scholar 

  9. Tang Y-Z, Zhi-Feng Gu, **ong J-B, Gao J-X, Liu Yi, Wang B, Tan Y-H, Xu Q (2016) Chem Mater 28:4476–4482

    Article  CAS  Google Scholar 

  10. **ao G, Wang K, Zhu Li, Tan X, Qiao Y, Yang Ke, Ma Y, Liu B, Zheng W, Zou Bo (2015) J Phys Chem C 119:3843–3848

    Article  CAS  Google Scholar 

  11. Kawamoto T, Asai Y, Abe S (2001) Phys Rev Lett 86:348–351

    Article  CAS  Google Scholar 

  12. Baek W, Heo J-M, Oh S, Lee S-H, Kim J, Joung JF, Park S, Chung H, Kim J-M (2016) Chem Commun 52:14059–14062

    Article  CAS  Google Scholar 

  13. Cheansirisomboon A, Pakawatchai C, Youngme S (2013) Aust J Chem 66:477–484

    Article  CAS  Google Scholar 

  14. Chen C, Zhang W-Y, Ye H-Y, Ye Q (2016) J Mater Chem C 4:9009–9020

    Article  CAS  Google Scholar 

  15. Tang Y-Z, Wang B, Zhou H-T, Chen S-P, Tan Y-H, Wang C-F, Yang C-S, Wen H-R (2018) Inorg Chem 57:1196–1202

    Article  CAS  Google Scholar 

  16. Daia L, Zhuangab Y, Lia H, Wua L, Hua H, Liuab K, Yangab L, Pu C (2017) J Mater Chem C 5:12157–12162

    Article  Google Scholar 

  17. Bennett TD, Simoncic P, Moggach SA, Gozzo F, Macchi P, Keen DA, Tan J-C, Cheetham AK (2011) Chem Commun 47:7983–7985

    Article  CAS  Google Scholar 

  18. Cui W, Yao M, Liu D, Li Q, Liu R, Zou Bo, Cui T, Liu B (2012) J Phys Chem B 116:2643–2650

    Article  CAS  Google Scholar 

  19. Tang Y-Z, Zhi-Feng G, Yang C-S, Wang B, Tan Y-H, Wen HR (2016) ChemistrySelect 1:6772–6776

    Article  CAS  Google Scholar 

  20. Asghar MA, Ji C, Zhou Y, Sun Z, Khan T, Zhang S, Zhao S, Luo J (2015) J Mater Chem C 3:6053–6057

    Article  CAS  Google Scholar 

  21. Jayaram V, Reddy KPJ (2016) Adv Mater Lett 7:100–150

    Google Scholar 

  22. Wang SJ, Sui ML, Chen YT, Lu QH, Ma E, Pei XY, Li QZ, Hu HB (2013) Sci Rep 3:1086–1092

    Article  CAS  Google Scholar 

  23. Liu J, Yingchun Yu, He H, ** X, Kang Xu (2000) Mater Res Bull 35:377–382

    Article  CAS  Google Scholar 

  24. Kalaiarasi S, Sivakumar A, Martin Britto Dhas SA, Jose M (2018) Mater Lett 219:72–75

    Article  CAS  Google Scholar 

  25. Sivakumar A, Reena Devi S, Sahaya Jude Dhas S, Mohan Kumar R, Kamala Bharathi K, Martin Britto Dhas SA (2020) Cryst Growth Des 20:7111–7119

    Article  CAS  Google Scholar 

  26. Sivakumar A, Sahaya Jude Dhas S, Sivaprakash P, Almansour AI, Suresh Kumar R, Arumugam N, Arumugam S, Martin Britto Dhas SA (2021) New J Chem 45:16529–16536

    Article  CAS  Google Scholar 

  27. Sivakumar A, Shailaja P, Sahaya Jude Dhas S, Sivaprakash P, Almansour AI, Suresh Kumar R, Arumugam N, Arumugam S, Chakraborty S, Martin Britto Dhas SA (2021) Cryst Growth Des 21:5050–5057

    Article  CAS  Google Scholar 

  28. Sivakumar A, Sahaya Jude Dhas S, Almansour AI, Suresh Kumar R, Arumugam N, Martin Britto Dhas SA (2021) Cryst Eng Comm 23:7044–7048

    Article  CAS  Google Scholar 

  29. Sivakumar A, Saranraj A, Sahaya Jude Dhas S, Almansour AI, Suresh Kumar R, Arumugam N, Perumal K, Martin Britto Dhas SA (2021) J Phys Chem C 125:25217–25226

    Article  CAS  Google Scholar 

  30. Sivakumar A, Soundarya S, Sahaya Jude Dhas S, Kamala Bharathi K, Martin Britto Dhas SA (2020) J Phys Chem C 124:10755–10763

    Article  CAS  Google Scholar 

  31. Mowlika V, Sivakumar A, Martin Britto Dhas SA, Naveen CS, Phani AR, Robert R (2020) J Nanostruc Chem 10:203–209

    Article  CAS  Google Scholar 

  32. Senthil Pandian M, CharoenIn U, Ramasamy P, Manyum P, Lenin M, Balamurugan N (2010) J Cryst Growth 312:397–401

    Article  CAS  Google Scholar 

  33. Thirupathy J, Sahaya Jude Dhas S, Jose M, Martin Britto Dhas SA (2020) J Mater Sci Mater Electron 31:14531–14536

    Article  CAS  Google Scholar 

  34. Ramesh R, Babu, Sethuraman K, Vijayan N, Gopalakrishnan R, Ramasamy P (2007) Mater Lett 61:3480–3485

    Article  Google Scholar 

  35. Kanda FA, Kin A (1951) J Am Chem Soc 73:2315–2319

    Article  CAS  Google Scholar 

  36. Batst JW, Coppens P, Koetzle TF (1977) Acta Cryst B 33:37–45

    Article  Google Scholar 

  37. Sonia, Vijayan N, Bhushan M, Thukral K, Raj R, Maurya KK, Haranath D, Martin Britto Dhas SA (2017) Appl Cryst 50:763–768

    Article  CAS  Google Scholar 

  38. Valluvan R, Selvaraju K, Kumararaman S (2006) Mater Chem Phys 97:81–84

    Article  CAS  Google Scholar 

  39. Li Q, Li S, Wang K, Li X, Liu J, Liu B, Zou G, Zou Bo (2013) J Chem Phys 138:214505–214513

    Article  Google Scholar 

  40. Varughese G (2016) Bull Mater Sci 39:1327–1334

    Article  CAS  Google Scholar 

  41. Sivakumar A, Balachandar S, Martin Britto Dhas SA (2020) Hum Fact Mech Eng Def Safety 4:3–9

    Article  Google Scholar 

  42. Sivakumar A, Sahaya Jude Dhas S, Balachandar S, Martin Britto Dhas SA (2019) Z Kristallogr 234:557–567

    Google Scholar 

  43. Sakuntala T, Arora AK, Chandra Shekar NV, Sahu PC (2000) J Phys Condens Matter 12:4417–4432

    Article  CAS  Google Scholar 

  44. Sakuntala T, Arora AK, Chandra Shekar NV, Sahu PC (1998) Europhys Lett 44:728–733

    Article  CAS  Google Scholar 

  45. Sivakumar A, Eniya P, Sahaya Jude Dhas S, Suresh Kumar R, Almansour AI, Siva Shanmugan K, Kalyana Sundar J, Martin Britto Dhas SA (2022) Cryst Eng Comm 24:52–56

    Article  CAS  Google Scholar 

  46. Lernos V, Sergio CS, Cazzanelli E, Fontana A (1990) Phy Rev B 41:11593–11596

    Article  Google Scholar 

  47. Zhao S, Flanagan R, Hahn EN, Kad B, Remington BA, Wehrenberg CE, Cauble R, More K, Meyers MA (2018) Acta Mater 158:206–213

    Article  CAS  Google Scholar 

  48. Zhao S, Kad B, Remington BA, LaSalvia JC, Wehrenberg CE, Behler KD, Meyers MA (2016) PNAS 113:12088–12093

    Article  CAS  Google Scholar 

  49. Zhi Su, Shaw WL, Miao Y-R, You S, Dlott DD, Suslick SK (2017) J Am Chem Soc 139:4619–4622

    Article  Google Scholar 

  50. Funnell NP, Marshall WG, Parsons S (2011) CrystEngComm 758:5841–5848

    Article  Google Scholar 

  51. Wang K, Duan D, Wang R, Lin A, Cui Q, Liu B, Cui T, Zou B, Zhang X, Hu J, Zou G, Mao HK (2009) Langmuir 25:4787–4791

    Article  CAS  Google Scholar 

  52. Zhang J, Li W, Guo Z (2013) J Magnes Alloy 1:31–38

    Article  CAS  Google Scholar 

  53. Sakai T, Belyakov A, Kaibyshev R, Miura H, Jonas JJ (2014) Prog Mater Sci 60:130–207

    Article  CAS  Google Scholar 

  54. Sabzi HE, Aboulkhair NT, Liang X, Li X-H, Fu MSH, Rivera-Díaz-del-Castillo PEJ (2020) Mater Des 196:109181–109191

    Article  CAS  Google Scholar 

  55. Philip D, Eapen A, Aruldhas G (1995) J Solid State Chem 116:217–223

    Article  CAS  Google Scholar 

  56. Sorb YA, Subramanian N, Ravindran TR (2013) J Phys Condens Matter 25:155401–155407

    Article  CAS  Google Scholar 

  57. Li Q, Liu B, Wang L, Li D, Liu R, Zou Bo, Cui T, Zou G (2010) J Phys Chem Lett 1:309–314

    Article  CAS  Google Scholar 

  58. Sivakumar A, Sahaya Jude Dhas S, Shubhadip C, Suresh Kumar R, Almansour, A I, Natarajan, A, and Martin Britto Dhas S A (2022) J Phys Chem C 126: 3194–3201

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Sacred Heart College for Don Bosco Research Grant (SHC/DB Grant/2021/01) and NSF of China (42072055). The project was supported by Researchers Supporting Project number (RSP2023R142), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Sivakumar, Lidong Dai or S. A. Martin Britto Dhas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Catalin Croitoru.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 112 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivakumar, A., Dhas, S.S.J., Dai, L. et al. Dynamic shock wave-induced switchable order to disorder states of single crystal of sulfamic acid: a combined study of X-ray and Raman spectroscopy. J Mater Sci 58, 8415–8425 (2023). https://doi.org/10.1007/s10853-023-08532-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08532-1

Navigation