Log in

A study of size-controlled Au@Cu2O nanocomposite for highly improved methyl orange catalytic performances

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, we synthesized Au-Cu2O core–shell nanoparticles (Au@Cu2O NPs) with epitaxial Cu2O shell, which have highly improved catalytic performances in methyl orange reduction reaction. We have obtained Au@Cu2O NPs with different sizes at low temperatures by changing the amount of Cu2+ precursor. Both Au and Cu2O are catalytic materials, especially Cu2O, as a p-type semiconductor, whose catalytic ability depends on the crystalline facets. Catalytic reduction of methyl orange (MO) was used as a model system to explore the catalytic properties of Au@Cu2O nanocomposite. In comparison to pure Au and Cu2O NPs, the catalytic performance of Au@Cu2O has a noticeable improvement. The best catalytic rate was ~ 22 times faster than that of AuNRs and ~ 4 times than that of Cu2O NPs. By studying the catalytic mechanism, it is supposed that the Schottky barrier at the Au-Cu2O interfaces leads to the charge separation, which is beneficial to catalysis. Therefore, the Au@Cu2O NPs we designed with controllable shell thickness is an ideal composite material in the catalyst domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ha M, Kim J-H, You M et al (2019) Multicomponent plasmonic nanoparticles: from heterostructured nanoparticles to colloidal composite nanostructures. Chem Rev 119:12208–12278. https://doi.org/10.1021/acs.chemrev.9b00234

    Article  CAS  Google Scholar 

  2. Zhou M, Li C, Fang J (2021) Noble-metal based random alloy and intermetallic nanocrystals: syntheses and applications. Chem Rev 121:736–795. https://doi.org/10.1021/acs.chemrev.0c00436

    Article  CAS  Google Scholar 

  3. **e C, Niu Z, Kim D et al (2020) Surface and interface control in nanoparticle catalysis. Chem Rev 120:1184–1249. https://doi.org/10.1021/acs.chemrev.9b00220

    Article  CAS  Google Scholar 

  4. Yoo S, Lee J, Hilal H et al (2022) Nesting of multiple polyhedral plasmonic nanoframes into a single entity. Nat Commun 13:4544. https://doi.org/10.1038/s41467-022-32261-9

    Article  CAS  Google Scholar 

  5. Zhang Q, Deng T-S, Wei M-Z et al (2021) Symmetric and asymmetric overgrowth of a Ag shell onto gold nanorods assisted by Pt pre-deposition. RSC Adv 11:34516–34524. https://doi.org/10.1039/D1RA07415F

    Article  CAS  Google Scholar 

  6. van der Hoeven JES, Jelic J, Olthof LA et al (2021) Unlocking synergy in bimetallic catalysts by core–shell design. Nat Mater 20:1216–1220. https://doi.org/10.1038/s41563-021-00996-3

    Article  CAS  Google Scholar 

  7. Zhang X, Han B, Wang Y et al (2019) Catalysis of organic pollutants abatement based on Pt-decorated Ag@Cu2O heterostructures. Molecules 24:2721. https://doi.org/10.3390/molecules24152721

    Article  CAS  Google Scholar 

  8. Yong Z, Shi Q, Fu R, Cheng W (2021) Fine-tuning Au@Pd nanocrystals for maximum plasmon-enhanced catalysis. Adv Mater Interfaces 8:2001686. https://doi.org/10.1002/admi.202001686

    Article  CAS  Google Scholar 

  9. Huang J, Zhou T, Zheng H et al (2022) Construction of ternary multifunctional Fe3O4/Cu2O/Au nanocomposites: SERS detection and visible light driven photocatalysis for organic dyes. Ceram Int 48:25413–25423. https://doi.org/10.1016/j.ceramint.2022.05.216

    Article  CAS  Google Scholar 

  10. Wang B, Li R, Zhang Z et al (2017) Novel Au/Cu2O multi-shelled porous heterostructures for enhanced efficiency photoelectrochemical water splitting. J Mater Chem A 5:14415–14421. https://doi.org/10.1039/C5TA06869J

    Article  CAS  Google Scholar 

  11. Sayed M, Yu J, Liu G, Jaroniec M (2022) Non-noble plasmonic metal-based photocatalysts. Chem Rev 122:10484–10537. https://doi.org/10.1021/acs.chemrev.1c00473

    Article  CAS  Google Scholar 

  12. Zhou N, Polavarapu L, Wang Q, Xu Q-H (2015) Mesoporous SnO2 -coated metal nanoparticles with enhanced catalytic efficiency. ACS Appl Mater Interfaces 7:4844–4850. https://doi.org/10.1021/am508803c

    Article  CAS  Google Scholar 

  13. de Ruíz-Baltazar ÁJ (2021) Sonochemical activation-assisted biosynthesis of Au/Fe3O4 nanoparticles and sonocatalytic degradation of methyl orange. Ultrason Sonochem 73:105521. https://doi.org/10.1016/j.ultsonch.2021.105521

    Article  CAS  Google Scholar 

  14. Zhao S, Riedel M, Patarroyo J et al (2022) Tailoring of the photocatalytic activity of CeO2 nanoparticles by the presence of plasmonic Ag nanoparticles. Nanoscale 14:12048–12059. https://doi.org/10.1039/D2NR01318E

    Article  CAS  Google Scholar 

  15. Wei M-Z, Deng T-S, Zhang Q et al (2021) Seed-mediated synthesis of gold nanorods at low concentrations of CTAB. ACS Omega 6:9188–9195. https://doi.org/10.1021/acsomega.1c00510

    Article  CAS  Google Scholar 

  16. González-Rubio G, Díaz-Núñez P, Rivera A et al (2017) Femtosecond laser resha** yields gold nanorods with ultranarrow surface plasmon resonances. Science 358:640–644. https://doi.org/10.1126/science.aan8478

    Article  CAS  Google Scholar 

  17. Fedorczyk A, Ratajczak J, Kuzmych O, Skompska M (2015) Kinetic studies of catalytic reduction of 4-nitrophenol with NaBH4 by means of Au nanoparticles dispersed in a conducting polymer matrix. J Solid State Electrochem 19:2849–2858. https://doi.org/10.1007/s10008-015-2933-5

    Article  CAS  Google Scholar 

  18. Zhao P, Feng X, Huang D et al (2015) Basic concepts and recent advances in nitrophenol reduction by gold- and other transition metal nanoparticles. Coord Chem Rev 287:114–136. https://doi.org/10.1016/j.ccr.2015.01.002

    Article  CAS  Google Scholar 

  19. Liu J, You F, He B et al (2022) Directing the architecture of surface-clean Cu2O for CO electroreduction. J Am Chem Soc 144:12410–12420. https://doi.org/10.1021/jacs.2c04260

    Article  CAS  Google Scholar 

  20. Chen X, Cui K, Hai Z et al (2021) Hydrothermal synthesis of Cu2O with morphology evolution and its effect on visible-light photocatalysis. Mater Lett 297:129921. https://doi.org/10.1016/j.matlet.2021.129921

    Article  CAS  Google Scholar 

  21. Kumar A, Singh H, Sahay S, Balasubramanian KB (2022) Charge injection Into electrodeposited Cu2O from metallic stacks and graphene. IEEE Trans Electron Devices 69:5755–5759. https://doi.org/10.1109/TED.2022.3197380

    Article  CAS  Google Scholar 

  22. Guo L, Mao Z, ** S et al (2021) A SERS study of charge transfer process in Au nanorod-MBA@Cu2O assemblies: effect of length to diameter ratio of Au nanorods. Nanomaterials 11:867. https://doi.org/10.3390/nano11040867

    Article  CAS  Google Scholar 

  23. Zhang S, Yi W, Guo Y et al (2021) Driving click reactions with plasmonic hot holes on (Au Core)@(Cu2O Shell) nanostructures for regioselective production of 1,2,3-Triazoles. ACS Appl Nano Mater 4:4623–4631. https://doi.org/10.1021/acsanm.1c00220

    Article  CAS  Google Scholar 

  24. Zhang G, Ma Y, Liu F et al (2021) Seeded growth of Au@CuxO core-shell mesoporous nanospheres and their photocatalytic properties. Front Chem 9:671220. https://doi.org/10.3389/fchem.2021.671220

    Article  CAS  Google Scholar 

  25. Wu T, Zheng H, Kou Y et al (2021) Self-sustainable and recyclable ternary Au@Cu2O–Ag nanocomposites: application in ultrasensitive SERS detection and highly efficient photocatalysis of organic dyes under visible light. Microsyst Nanoeng 7:23. https://doi.org/10.1038/s41378-021-00250-5

    Article  CAS  Google Scholar 

  26. Zhu Y, Hong W, Liu X et al (2021) Rapid bacterial elimination achieved by sonodynamic Au@Cu2O hybrid nanocubes. Nanoscale 13:15699–15710. https://doi.org/10.1039/D1NR04512A

    Article  CAS  Google Scholar 

  27. Zhang A, Liu Y, Wu J et al (2022) Weakening OO binding on Au-Cu2O/carbon nanotube catalysts with local misfit dislocation by interfacial coupling interaction for oxygen reduction reaction. Chem Eng Sci 252:117513. https://doi.org/10.1016/j.ces.2022.117513

    Article  CAS  Google Scholar 

  28. Huang Y, Han Y, Sun J et al (2022) Dual nanocatalysts co-decorated three-dimensional, laser-induced graphene hybrid nanomaterials integrated with a smartphone portable electrochemical system for point-of-care non-enzymatic glucose diagnosis. Mater Today Chem 24:100895. https://doi.org/10.1016/j.mtchem.2022.100895

    Article  CAS  Google Scholar 

  29. Chen Y, Lin P, Zou X et al (2022) Machine-learning-aided identification of steroid hormones based on the anisotropic galvanic replacement generated sensor array. Sens Actuators B Chem 370:132470. https://doi.org/10.1016/j.snb.2022.132470

    Article  CAS  Google Scholar 

  30. Lu B, Liu A, Wu H et al (2016) Hollow Au–Cu2O core-shell nanoparticles with geometry-dependent optical properties as efficient plasmonic photocatalysts under visible light. Langmuir 32:3085–3094. https://doi.org/10.1021/acs.langmuir.6b00331

    Article  CAS  Google Scholar 

  31. Kong L, Chen W, Ma D et al (2012) Size control of Au@Cu2O octahedra for excellent photocatalytic performance. J Mater Chem 22:719–724. https://doi.org/10.1039/C1JM13672K

    Article  CAS  Google Scholar 

  32. Xu W, Jia J, Wang T et al (2020) Continuous tuning of Au–Cu2O janus nanostructures for efficient charge separation. Angew Chem Int Ed 59:22246–22251. https://doi.org/10.1002/anie.202010613

    Article  CAS  Google Scholar 

  33. Ye X, Zheng C, Chen J et al (2013) Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods. Nano Lett 13:765–771. https://doi.org/10.1021/nl304478h

    Article  CAS  Google Scholar 

  34. Palik ED, Ghosh G (1998) Handbook of optical constants of solids. Academic Press, San Diego

    Google Scholar 

  35. Kuo C-H, Huang MH (2008) Facile synthesis of Cu2O nanocrystals with systematic shape evolution from cubic to octahedral structures. J Phys Chem C 112:18355–18360. https://doi.org/10.1021/jp8060027

    Article  CAS  Google Scholar 

  36. Zhang L, **g H, Boisvert G et al (2012) Geometry control and optical tunability of metal-cuprous oxide core-shell nanoparticles. ACS Nano 6:3514–3527. https://doi.org/10.1021/nn300546w

    Article  CAS  Google Scholar 

  37. Zhang S, Jiang R, Guo Y et al (2016) Plasmon modes induced by anisotropic gap opening in Au@Cu2O nanorods. Small 23:4264–4276. https://doi.org/10.1002/smll.201600065

    Article  CAS  Google Scholar 

  38. Hu Z, Mi Y, Ji Y et al (2019) Multiplasmon modes for enhancing photocatalytic activity of Au/Ag/Cu2O core-shell nanorods. Nanoscale 11:16445–16454. https://doi.org/10.1039/c9nr03943k

    Article  CAS  Google Scholar 

  39. Muhd Julkapli N, Bagheri S, Bee Abd Hamid S (2014) Recent advances in heterogeneous photocatalytic decolorization of synthetic dyes. Sci World J 2014:1–25. https://doi.org/10.1155/2014/692307

    Article  CAS  Google Scholar 

  40. Gao Q, **ng Y, Peng M et al (2017) Enhancement of Fe3O4 /Au composite nanoparticles catalyst in oxidative degradation of methyl orange based on synergistic effect. Chin J Chem 35:1431–1436. https://doi.org/10.1002/cjoc.201700032

    Article  CAS  Google Scholar 

  41. Wang L, Ge J, Wang A et al (2014) Designing p-type semiconductor-metal hybrid structures for improved photocatalysis. Angew Chem Int Ed 53:5107–5111. https://doi.org/10.1002/anie.201310635

    Article  CAS  Google Scholar 

  42. Yanagida S, Yajima T, Takei T, Kumada N (2022) Removal of hexavalent chromium from water by Z-scheme photocatalysis using TiO2 (rutile) nanorods loaded with Au core–Cu2O shell particles. J Environ Sci 115:173–189. https://doi.org/10.1016/j.jes.2021.05.025

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Sudan Shen for her assistance in TEM at State Key Laboratory of Chemical Engineering (Zhejiang University). The authors also acknowledge financial support from National Natural Science Foundation of China (NSFC, Grant No. 61905056). This work was also supported by National Key R&D Program of China (Grant:2018YFE0207500), the National Natural Science Foundation (Grant 91938201 and 61871169), Zhejiang Provincial Natural Science Foundation (Grant LZ20F010004) and Project of Ministry of Science and Technology (Grant D20011).

Author information

Authors and Affiliations

Authors

Contributions

Y-QD: Investigation; Writing – original draft; Visualization. T-SD: Writing – review & editing; Funding acquisition; Supervision. QZ: Investigation. X-YZ: Resources. JL: Writing – review & editing; Resources. Z-QC: Funding acquisition.

Corresponding author

Correspondence to Tian-Song Deng.

Ethics declarations

Conflict of interest

The authors declares that they have no conflict to interest.

Additional information

Handling Editor: Yaroslava Yingling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2587 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dou, YQ., Deng, TS., Zhang, Q. et al. A study of size-controlled Au@Cu2O nanocomposite for highly improved methyl orange catalytic performances. J Mater Sci 58, 7583–7593 (2023). https://doi.org/10.1007/s10853-023-08524-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08524-1

Navigation