Log in

A highly efficient piezoelectric elastomer with a green product cycle from fabrication to degradation

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Piezoelectric generators (PEGs) have applications in future wearable and implantable technologies, but suffer from insufficient flexibility, poor biocompatibility, facile biodegradation, and low energy output. In this work, a design concept for a piezoelectric elastomer is proposed. Uniquely, we focus on develo** a complete “green” design concept, considering the selection of a bio-based monomer, polymer fabrication, and biodegradation. The piezoelectric elastomer, which was prepared by the copolymerization of lactate, 1,4-butanediol, and sebacate monomers, is capable of generating an output voltage of 303.75 mV cm−2 and an output current of 1.92 × 10–2 mA cm−2, which are 7.11 times and 4.01 times, respectively, higher than those of a conventional polyvinylidene fluoride–trifluoroethylene copolymer (PVDF-TrFE)-based PEG under the same measurement conditions. Such efficient piezoelectric conversion is attributed to the reduced elastic modulus of the elastomer, which resulted from the random polymerization between piezoelectric lactate monomers and linear 1,4-butanediol and sebacate monomers. As a result, the elastomer generates a greater piezoelectric charge on deformation than traditional PVDF-TrFE. Further, the relative growth rate of L929 mouse fibroblast cells grown on the modified elastomer was unaffected, demonstrating the good biocompatibility of the piezoelectric elastomer. On the basis of the overall environmentally friendly product cycle and high piezoelectric output, this PEG shows promise for applications in future wearable and implantable technologies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Sezer N, Koç M, A, (2021) comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy 80:105567. https://doi.org/10.1016/j.nanoen.2020.105567

    Article  CAS  Google Scholar 

  2. **e XD, Wang Q (2015) Energy harvesting from a vehicle suspension system. Energy 86:385–392. https://doi.org/10.1016/J.ENERGY.2015.04.009

    Article  Google Scholar 

  3. Shi Q, He T, Lee C (2019) More than energy harvesting–Combining triboelectric nanogenerator and flexible electronics technology for enabling novel micro-/nano-systems. Nano Energy 57:851–871. https://doi.org/10.1016/j.nanoen.2019.01.002

    Article  CAS  Google Scholar 

  4. Wang S, Wang ZL, Yang Y, A, (2016) One-structure-based hybridized nanogenerator for scavenging mechanical and thermal energies by triboelectric–piezoelectric–pyroelectric effects. Adv Mater 28:2881–2887. https://doi.org/10.1002/adma.201505684

    Article  CAS  Google Scholar 

  5. Sun C, Shi J, Bayerl DJ, Wang X (2011) PVDF microbelts for harvesting energy from respiration. Energy Environ Sci 4:4508–4512. https://doi.org/10.1039/C1EE02241E

    Article  CAS  Google Scholar 

  6. Xu C, Song Y, Han M, Zhang H (2021) Portable and wearable self-powered systems based on emerging energy harvesting technology. Microsyst Nanoeng 7:25. https://doi.org/10.1038/s41378-021-00248-z

    Article  Google Scholar 

  7. Wang DW, Mo JL, Wang XF, Ouyang H, Zhou ZR (2018) Experimental and numerical investigations of the piezoelectric energy harvesting via friction-induced vibration. Energy Convers Manag 171:1134–1149. https://doi.org/10.1016/J.ENCONMAN.2018.06.052

    Article  Google Scholar 

  8. Yan J, Jeong YG (2016) High performance flexible piezoelectric nanogenerators based on BaTiO3 nanofibers in different alignment modes. ACS Appl Mater Interfaces 8:15700–15709. https://doi.org/10.1021/acsami.6b02177

    Article  CAS  Google Scholar 

  9. Park K-I, Jeong CK, Ryu J, Hwang G-T, Lee KJ (2013) Flexible and large-area nanocomposite generators based on lead zirconate titanate particles and carbon nanotubes. Adv Energy Mater 3:1539–1544. https://doi.org/10.1002/aenm.201300458

    Article  CAS  Google Scholar 

  10. Chung SY, Kim S, Lee J-H, Kim K, Kim S-W, Kang C-Y, Yoon S-J, Kim YS (2012) All-solution-processed flexible thin film piezoelectric nanogenerator. Adv Mater 24:6022–6027. https://doi.org/10.1002/adma.201202708

    Article  CAS  Google Scholar 

  11. Koka A, Sodano HA (2014) A low-frequency energy harvester from ultralong, vertically aligned BaTiO3 nanowire arrays. Adv Energy Mater 4:1301660. https://doi.org/10.1002/aenm.201301660

    Article  CAS  Google Scholar 

  12. He Z, Rault F, Lewandowski M, Mohsenzadeh E, Salaün F (2021) Electrospun PVDF nanofibers for piezoelectric applications: a review of the influence of electrospinning parameters on the β phase and crystallinity enhancement. Polymers (Basel). https://doi.org/10.3390/polym13020174

    Article  Google Scholar 

  13. Yuan X, Gao X, Shen X, Yang J, Li Z, Dong S (2021) A 3D-printed, alternatively tilt-polarized PVDF-TrFE polymer with enhanced piezoelectric effect for self-powered sensor application. Nano Energy 85:105985. https://doi.org/10.1016/J.NANOEN.2021.105985

    Article  CAS  Google Scholar 

  14. Wang X, Ling X, Hu Y, Hu X, Zhang Q, Sun K, **ang Y (2022) Electronic skin based on PLLA/TFT/PVDF-TrFE array for multi-functional tactile sensing and visualized restoring. Chem Eng J 434:134735. https://doi.org/10.1016/j.cej.2022.134735

    Article  CAS  Google Scholar 

  15. Gu L, Liu J, Cui N, Xu Q, Du T, Zhang L, Wang Z, Long C, Qin Y (2020) Enhancing the current density of a piezoelectric nanogenerator using a three-dimensional intercalation electrode. Nat Commun 11:1–9. https://doi.org/10.1038/s41467-020-14846-4

    Article  CAS  Google Scholar 

  16. Mokhtari F, Spinks GM, Fay C, Cheng Z, Raad R, ** J, Foroughi J (2020) Wearable electronic textiles from nanostructured piezoelectric fibers. Adv Mater Technol. https://doi.org/10.1002/admt.201900900

    Article  Google Scholar 

  17. Chen X, Han X, Shen Q-D (2017) PVDF-based ferroelectric polymers in modern flexible electronics. Adv Electron Mater 3:1600460. https://doi.org/10.1002/aelm.201600460

    Article  CAS  Google Scholar 

  18. A.L. Moore (2006) 3-Fluoroelastomer Monomers. In: A.L.B.T.-F.H. Moore (Ed.), Plastics Design Library, William Andrew Publishing, Norwich, NY, pp 25–36. https://doi.org/10.1016/B978-081551517-3.50006-X

  19. Li J, Long Y, Yang F, Wang X (2020) Degradable piezoelectric biomaterials for wearable and implantable bioelectronics. Curr Opin Solid State Mater Sci 24:100806. https://doi.org/10.1016/j.cossms.2020.100806

    Article  CAS  Google Scholar 

  20. Liu F, Hashim NA, Liu Y, Abed MRM, Li K (2011) Progress in the production and modification of PVDF membranes. J Memb Sci 375:1–27. https://doi.org/10.1016/j.memsci.2011.03.014

    Article  CAS  Google Scholar 

  21. Sun Y, Ma Z, Xu X, Liu X, Liu L, Huang G, Liu L, Wang H, Song P (2020) Grafting lignin with bioderived polyacrylates for low-cost, ductile, and fully biobased poly(lactic acid) composites. ACS Sustain Chem Eng 8:2267–2276. https://doi.org/10.1021/acssuschemeng.9b06593

    Article  CAS  Google Scholar 

  22. Balla E, Daniilidis V, Karlioti G, Kalamas T, Stefanidou M, Bikiaris ND, Vlachopoulos A, Koumentakou I, Bikiaris DN (2021) Poly(lactic acid): a versatile biobased polymer for the future with multifunctional properties—from monomer synthesis. Polymers, Polymerization Techniques and Molecular Weight Increase to PLA Applications. https://doi.org/10.3390/polym13111822

    Book  Google Scholar 

  23. Broadhurst MG, Davis GT, McKinney JE, Collins RE (1978) Piezoelectricity and pyroelectricity in polyvinylidene fluoride—a model. J Appl Phys 49:4992–4997. https://doi.org/10.1063/1.324445

    Article  CAS  Google Scholar 

  24. Yu Y, **ong H, **ao J, Qian X, Leng X, Wei Z, Li Y (2019) High molecular weight unsaturated copolyesters derived from fully biobased trans-β-hydromuconic acid and fumaric acid with 1,4-butanediol: synthesis and thermomechanical properties. ACS Sustain Chem Eng 7:6859–6869. https://doi.org/10.1021/acssuschemeng.8b06334

    Article  CAS  Google Scholar 

  25. Wunschik DS, Ingenbosch KN, Zähres M, Horst J, Mayer C, Jäger M, Strehmel V, Dornbusch M, Hoffmann-Jacobsen K (2018) Biocatalytic and solvent-free synthesis of a bio-based biscyclocarbonate. Green Chem 20:4738–4745. https://doi.org/10.1039/C8GC02267D

    Article  CAS  Google Scholar 

  26. Menager C, Guigo N, Vincent L, Sbirrazzuoli N (2020) Polymerization kinetic pathways of epoxidized linseed oil with aliphatic bio-based dicarboxylic acids. J Poly Sci 58:1717–1727. https://doi.org/10.1002/pol.20200118

    Article  CAS  Google Scholar 

  27. Wang G, Jiang M, Zhang Q, Wang R, Liang Q, Zhou G (2019) New bio-based copolyesters derived from 1,4-butanediol, terephthalic acid and 2,5-thiophenedicarboxylic acid: synthesis, crystallization behavior, thermal and mechanical properties. Polym Test 75:213–219. https://doi.org/10.1016/j.polymertesting.2019.02.020

    Article  CAS  Google Scholar 

  28. Fukada E (1998) New piezoelectric polymers. Jpn J Appl Phys 37:2775–2780. https://doi.org/10.1143/jjap.37.2775

    Article  CAS  Google Scholar 

  29. W.-F. Su (2013) Structure morphology flow of polymer BT - principles of polymer design and synthesis. In: W.-F. Su (Ed.), Springer Berlin Heidelberg, Berlin, Heidelberg, pp 27–59. https://doi.org/10.1007/978-3-642-38730-2_3.

  30. Desai SD, Emanuel AL, Sinha VK (2003) Biomaterial based polyurethane adhesive for bonding rubber and wood joints. J Polym Res 10:275–281. https://doi.org/10.1023/B:JPOL.0000004630.77120.bb

    Article  CAS  Google Scholar 

  31. Hu X, Kang H, Li Y, Li M, Wang R, Xu R, Qiao H, Zhang L (2015) Direct copolycondensation of biobased elastomers based on lactic acid with tunable and versatile properties. Polym Chem 6:8112–8123. https://doi.org/10.1039/c5py01332a

    Article  CAS  Google Scholar 

  32. Fernández J, Meaurio E, Chaos A, Etxeberria A, Alonso-Varona A, Sarasua JR (2013) Synthesis and characterization of poly (l-lactide/ε-caprolactone) statistical copolymers with well resolved chain microstructures. Polymer (Guildf) 54:2621–2631. https://doi.org/10.1016/j.polymer.2013.03.009

    Article  CAS  Google Scholar 

  33. Vinogradov A, Holloway F (1999) Electro-mechanical properties of the piezoelectric polymer PVDF. Ferroelectrics 226:169–181. https://doi.org/10.1080/00150199908230298

    Article  CAS  Google Scholar 

  34. Hu X, Ding Z, Fei L, **ang Y, lin Y (2019) Wearable piezoelectric nanogenerators based on reduced graphene oxide and in situ polarization-enhanced PVDF-TrFE films. J Mater Sci 54:6401–6409. https://doi.org/10.1007/s10853-019-03339-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Start-up Funding of University of Electronic Science and Technology of China (Y030212059003040) and Chinesisch-Deutsche Zentrum für Wissenschaftsförderung, China (GZ 1697).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong **ang or **aoran Hu.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5087 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhang, Q., Zhu, H. et al. A highly efficient piezoelectric elastomer with a green product cycle from fabrication to degradation. J Mater Sci 58, 4840–4852 (2023). https://doi.org/10.1007/s10853-023-08349-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08349-y

Navigation