Log in

Macroscopically heterogeneous grain boundary diffusion process for efficient coercivity enhancement of Nd–Fe–B magnets

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Grain boundary diffusion (GBD) is an effective process to enhance coercivity for Nd–Fe–B magnets with relatively low consumption of expensive heavy rare earths (HREs). For conventional GBD, the surface of the magnet is evenly covered by diffusion source, followed by diffusion heat treatment. In this work, a macroscopically heterogeneous GBD (MHGBD) process is proposed in order to further reduce the use of HRE resource. Based on the micromagnetic simulations, magnetically strengthening the edge area of the magnet is more effective than strengthening the center area in terms of coercivity enhancement for whole magnet. Hence, the HRE-based diffusion source was used for enhancing the edge area and the light rare-earth-based source was used for the center area. In details, Tb70Al20Cu10 and Pr70Al20Cu10 diffusion sources were covered at the edge and center areas of the two c-planes of a sintered Nd–Fe–B magnet, respectively. After the MHGBD by using Tb70Al20Cu10/Pr70Al20Cu10 (1:1, at.%), the magnet exhibits the increased coercivity from 1182 to 1911 kA/m. For comparison, the homogeneous diffusion of HRE-based Tb70Al20Cu10 source only enhances the coercivity to 1798 kA/m. The microstructure characterizations indicated that diffusion source of Tb70Al20Cu10 can form Tb-rich shells with high anisotropy field on the surface of Nd2Fe14B grains, and Pr70Al20Cu10 can provide more liquid grain boundary phase for GBD. The synergistic effect between these two sources improves the infiltration of Tb at the edge area of the magnet. Compared with the homogeneous Tb70Al20Cu10 diffusion, MHGBD process can not only exhibit higher diffusion efficiency, but also enhance the performance/cost ratio of the diffused magnets, evident by the increased coercivity enhancement per unit source from 0.23 to 0.51 kA m−1/($/kg).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data Availability

Data available on request from the authors.

References

  1. Oono N, Sagawa M, Kasada R, Matsui H, Kimura A (2011) Production of thick high-performance sintered neodymium magnets by grain boundary diffusion treatment with dysprosium–nickel–aluminum alloy. J Magn Magn Mater 323:297–300. https://doi.org/10.1016/j.jmmm.2010.09.021

    Article  CAS  Google Scholar 

  2. Herbst JF (1991) R2Fe14B materials: intrinsic properties and technological aspects. Rev Mod Phys 63:819–898. https://doi.org/10.1103/RevModPhys.63.819

    Article  CAS  Google Scholar 

  3. Liu Z, He J, Ramanujan RV (2021) Significant progress of grain boundary diffusion process for cost-effective rare earth permanent magnets: a review. Mater Des 209:110004. https://doi.org/10.1016/j.matdes.2021.110004

    Article  CAS  Google Scholar 

  4. Wang H, Lamichhane TN, Paranthaman MP (2022) Review of additive manufacturing of permanent magnets for electrical machines: a prospective on wind turbine. Mater Today Phys 24:100675. https://doi.org/10.1016/j.mtphys.2022.100675

    Article  CAS  Google Scholar 

  5. Sugimoto S (2011) Current status and recent topics of rare-earth permanent magnets. J Phys D: Appl Phys 44:064001. https://doi.org/10.1088/0022-3727/44/6/064001

    Article  CAS  Google Scholar 

  6. He J, Cao J, Yu Z, Song W, Yu H, Hussain M, Liu Z (2021) Grain boundary diffusion sources and their coating methods for Nd–Fe–B permanent magnets. Metals 11:1434. https://doi.org/10.3390/met11091434

    Article  CAS  Google Scholar 

  7. Liu Z, He J, Zhou Q, Huang Y, Jiang Q (2022) Development of non-rare earth grain boundary modification techniques for Nd–Fe–B permanent magnets. J Mater Sci Technol 98:51–61. https://doi.org/10.1016/j.jmst.2021.05.012

    Article  Google Scholar 

  8. Nakamura H, Hirota K, Shimao M, Minowa T, Honshima M (2005) Magnetic properties of extremely small Nd–Fe–B sintered magnets. IEEE Trans Magn 41:3844–3846. https://doi.org/10.1109/tmag.2005.854874

    Article  CAS  Google Scholar 

  9. He J, Cao J, Hu J, Yu Z, Zhang X, Yu H, Mao H, Liu Z (2022) Reducing the process consumption of Tb in grain boundary diffusion of Nd–Fe–B magnets by sputtering deposition instead of adhesive coating. J Alloy Compd 928:167016. https://doi.org/10.1016/j.jallcom.2022.167016

    Article  CAS  Google Scholar 

  10. Loewe K, Benke D, Kübel C, Lienig T, Skokov KP, Gutfleisch O (2017) Grain boundary diffusion of different rare earth elements in Nd–Fe–B sintered magnets by experiment and FEM simulation. Acta Mater 124:421–429. https://doi.org/10.1016/j.actamat.2016.11.034

    Article  CAS  Google Scholar 

  11. Kim T-H, Lee S-R, Kim H-J, Lee M-W, Jang T-S (2015) Simultaneous application of Dy–X (X=F or H) powder do** and dip-coating processes to Nd–Fe–B sintered magnets. Acta Mater 93:95–104. https://doi.org/10.1016/j.actamat.2015.04.019

    Article  CAS  Google Scholar 

  12. Sepehri-Amin H, Liu J, Ohkubo T, Hioki K, Hattori A, Hono K (2013) Enhancement of coercivity of hot-deformed Nd–Fe–B anisotropic magnet by low-temperature grain boundary diffusion of Nd60Dy20Cu20 eutectic alloy. Scr Mater 69:647–650. https://doi.org/10.1016/j.scriptamat.2013.07.011

    Article  CAS  Google Scholar 

  13. Zhao L, He J, Li W, Liu X, Zhang J, Wen L, Zhang Z, Hu J, Zhang J, Liao X, Xu K, Fan W, Song W, Yu H, Zhong X, Liu Z, Zhang X (2022) Understanding the role of element grain boundary diffusion mechanism in Nd–Fe–B magnets. Adv Funct Mater 32:2109529. https://doi.org/10.1002/adfm.202109529

    Article  CAS  Google Scholar 

  14. He J, Yu Z, Cao J, Song W, Xu K, Fan W, Yu H, Zhong X, Mao H, Mao C, Liu Z (2022) Rationally selecting the chemical composition of the Nd–Fe–B magnet for high-efficiency grain boundary diffusion of heavy rare earths. J Mater Chem C 10:2080–2088. https://doi.org/10.1039/d1tc05469d

    Article  CAS  Google Scholar 

  15. Cao J, He J, Yu Z, Song W, Yu H, Fan W, Zhou B, Xu Z, Liu Z (2022) Alloying Pr-Tb-Cu diffusion source with Ni for enhancing both coercivity and corrosion resistance of Nd–Fe–B magnets. J Alloy Compd 911:165049. https://doi.org/10.1016/j.jallcom.2022.165049

    Article  CAS  Google Scholar 

  16. Sepehri-Amin H, Ohkubo T, Nishiuchi T, Hirosawa S, Hono K (2010) Coercivity enhancement of hydrogenation–disproportionation–desorption–recombination processed Nd–Fe–B powders by the diffusion of Nd–Cu eutectic alloys. Scr Mater 63:1124–1127. https://doi.org/10.1016/j.scriptamat.2010.08.021

    Article  CAS  Google Scholar 

  17. Chen F, Zhang T, Wang J, Zhang L, Zhou G (2015) Coercivity enhancement of a Nd–Fe–B sintered magnet by diffusion of Nd70Cu30 alloy under pressure. Scr Mater 107:38–41. https://doi.org/10.1016/j.scriptamat.2015.05.015

    Article  CAS  Google Scholar 

  18. Lu K, Bao X, Tang M, Sun L, Li J, Gao X (2017) Influence of annealing on microstructural and magnetic properties of Nd–Fe–B magnets by grain boundary diffusion with Pr-Cu and Dy-Cu alloys. J Magn Magn Mater 441:517–522. https://doi.org/10.1016/j.jmmm.2017.03.049

    Article  CAS  Google Scholar 

  19. Zeng HX, Liu ZW, Zhang JS, Liao XF, Yu HY (2020) Towards the diffusion source cost reduction for NdFeB grain boundary diffusion process. J Mater Sci Technol 36:50–54. https://doi.org/10.1016/j.jmst.2019.08.009

    Article  CAS  Google Scholar 

  20. Di J, Ding G, Tang X, Yang X, Guo S, Chen R, Yan A (2018) Highly efficient Tb-utilization in sintered Nd–Fe–B magnets by Al aided TbH2 grain boundary diffusion. Scr Mater 155:50–53. https://doi.org/10.1016/j.scriptamat.2018.06.020

    Article  CAS  Google Scholar 

  21. Li F, Li J, Rehman SU, Zhang L, Hu Y, Yang M, Yu X, Zhong S, Liang T (2021) Pr80Al20 surface-coated DyF3 modified sintered Nd–Fe–B magnets for large coercivity increment via grain boundary diffusion. J Alloy Compd 899:163270. https://doi.org/10.1016/j.jallcom.2021.163270

    Article  CAS  Google Scholar 

  22. Song W, He J, Yu Z, Cao J, Liao X, Fan W, Yu H, Mao H, Mao C, Liu Z (2022) Enhancing the grain boundary diffusion efficiency of Tb for Nd–Fe–B magnets using dual-alloy diffusion source. J Market Res 18:841–851. https://doi.org/10.1016/j.jmrt.2022.03.016

    Article  CAS  Google Scholar 

  23. Cao S, Bao X, Song X, Zhang C, Yan X, Li J, Gao X (2021) High coercivity Nd–Fe–B magnet with low Tb concentration by combined diffusion. J Magn Magn Mater 528:167701. https://doi.org/10.1016/j.jmmm.2020.167701

    Article  CAS  Google Scholar 

  24. Yu H, Bao X, Li J, Gao X (2022) Microstructure optimization and coercivity enhancement of Nd–Fe–B magnet by double-step diffusion with Pr60Cu20Al20 alloy and Tb metal. J Magn Magn Mater 562:169743. https://doi.org/10.1016/j.jmmm.2022.169743

    Article  CAS  Google Scholar 

  25. Li W, Zhou Q, Zhao LZ, Wang QX, Zhong XC, Liu ZW (2018) Micromagnetic simulation of anisotropic grain boundary diffusion for sintered Nd–Fe–B magnets. J Magn Magn Mater 451:704–709. https://doi.org/10.1016/j.jmmm.2017.12.002

    Article  CAS  Google Scholar 

  26. Chen F, Zhang T, Zhao Y, Wang X, Jiang C, Chen J, Zhao W (2021) A novel strategy to design and fabricate Nd–Fe–B magnets. J Alloy Compd 867:159102. https://doi.org/10.1016/j.jallcom.2021.159102

    Article  CAS  Google Scholar 

  27. He J, Song W, Liu X, Yu H, Zhong X, Liu Z (2022) High-efficient selected area grain boundary diffusion for enhancing the coercivity of thick Nd–Fe–B magnets. Appl Phys Lett 120:042405. https://doi.org/10.1063/5.0080935

    Article  CAS  Google Scholar 

  28. Schrefl T, Fischer R, Fidler J, Kronmuller H (1994) Two- and three-dimensional calculation of remanence enhancement of rare-earth based composite magnets. J Appl Phys 76:7053–7058. https://doi.org/10.1063/1.358026

    Article  CAS  Google Scholar 

  29. Liu D, Zhao TY, Li R, Zhang M, Shang RX, **ong JF, Zhang J, Sun JR, Shen BG (2017) Micromagnetic simulation of the influence of grain boundary on cerium substituted Nd–Fe–B magnets. AIP Adv 7:056201. https://doi.org/10.1063/1.4972803

    Article  CAS  Google Scholar 

  30. Sepehri-Amin H, Ohkubo T, Gruber M, Schrefl T, Hono K (2014) Micromagnetic simulations on the grain size dependence of coercivity in anisotropic Nd–Fe–B sintered magnets. Scr Mater 89:29–32. https://doi.org/10.1016/j.scriptamat.2014.06.020

    Article  CAS  Google Scholar 

  31. Oikawa T, Yokota H, Ohkubo T, Hono K (2016) Large-scale micromagnetic simulation of Nd–Fe–B sintered magnets with Dy-rich shell structures. AIP Adv 6:056006. https://doi.org/10.1063/1.4943058

    Article  CAS  Google Scholar 

  32. Kronmuller H (1987) Theory of nucleation fields in inhomogeneous ferromagnets. Phys Status Solidi B 144:385–396. https://doi.org/10.1002/pssb.2221440134

    Article  Google Scholar 

  33. https://hq.smm.cn/rare-earth. Accessed 28 March 2022

  34. Lu K, Bao X, Chen G, Mu X, Zhang X, Lv X, Ding Y, Gao X (2019) Coercivity enhancement of Nd–Fe–B sintered magnet by grain boundary diffusion process using Pr-Tb-Cu-Al alloys. J Magn Magn Mater 477:237–243. https://doi.org/10.1016/j.jmmm.2019.01.062

    Article  CAS  Google Scholar 

  35. Song W, He J, Pan H, Yu Z, Cao J, Fan W, Yu H, Liu Z (2022) On the anisotropic grain boundary diffusion of sintered Nd–Fe–B magnets. Mater Lett 328:133207. https://doi.org/10.1016/j.matlet.2022.133207

    Article  CAS  Google Scholar 

  36. Gao X, Li J, Zhao W, Liu Y, Wang R, Liao L (2020) Microstructure evolution and coercivity enhancement of sintered Nd–Fe–B magnets by grain boundary diffusion with Cu aided TbF3. Mater Res Express 7:016101. https://doi.org/10.1088/2053-1591/ab56f4

    Article  CAS  Google Scholar 

  37. Hirosawa S, Matsuura Y, Yamamoto H, Fujimura S, Sagawa M, Yamauchi H (1986) Magnetization and magnetic anisotropy of R2Fe14B measured on single crystals. J Appl Phys 59:873–879. https://doi.org/10.1063/1.336611

    Article  CAS  Google Scholar 

  38. Brown WF Jr (1945) Virtues and weaknesses of the domain concept. Rev Mod Phys 17(1):15

    Article  Google Scholar 

  39. Helbig T, Loewe K, Sawatzki S, Yi M, Xu B-X, Gutfleisch O (2017) Experimental and computational analysis of magnetization reversal in (Nd, Dy)-Fe-B core shell sintered magnets. Acta Mater 127:498–504. https://doi.org/10.1016/j.actamat.2017.01.055

    Article  CAS  Google Scholar 

  40. Li WF, Ohkubo T, Hono K (2009) Effect of post-sinter annealing on the coercivity and microstructure of Nd–Fe–B permanent magnets. Acta Mater 57:1337–1346. https://doi.org/10.1016/j.actamat.2008.11.019

    Article  CAS  Google Scholar 

  41. Kim T-H, Lee S-R, Yun SJ, Lim SH, Kim H-J, Lee M-W, Jang T-S (2016) Anisotropic diffusion mechanism in grain boundary diffusion processed Nd–Fe–B sintered magnet. Acta Mater 112:59–66. https://doi.org/10.1016/j.actamat.2016.04.019

    Article  CAS  Google Scholar 

  42. Seelam UMR, Ohkubo T, Abe T, Hirosawa S, Hono K (2014) Faceted shell structure in grain boundary diffusion-processed sintered Nd–Fe–B magnets. J Alloy Compd 617:884–892. https://doi.org/10.1016/j.jallcom.2014.07.166

    Article  CAS  Google Scholar 

  43. Löewe K, Brombacher C, Katter M, Gutfleisch O (2015) Temperature-dependent Dy diffusion processes in Nd–Fe–B permanent magnets. Acta Mater 83:248–255. https://doi.org/10.1016/j.actamat.2014.09.039

    Article  CAS  Google Scholar 

  44. Kim T-H, Sasaki TT, Koyama T, Fujikawa Y, Miwa M, Enokido Y, Ohkubo T, Hono K (2020) Formation mechanism of Tb-rich shell in grain boundary diffusion processed Nd–Fe–B sintered magnets. Scr Mater 178:433–437. https://doi.org/10.1016/j.scriptamat.2019.12.002

    Article  CAS  Google Scholar 

  45. Soderžnik KŽ, Rožman KŽ, Komelj M, Kovács A, Diehle P, Denneulin T, Savenko A, Soderžnik M, Kobe S, Dunin-Borkowski RE, Mayer J, Markoli B, Šturm S (2021) Microstructural insights into the coercivity enhancement of grain-boundary-diffusion-processed Tb-treated Nd–Fe–B sintered magnets beyond the core-shell formation mechanism. J Alloy Compd 864:158915. https://doi.org/10.1016/j.jallcom.2021.158915

    Article  CAS  Google Scholar 

  46. Kim T-H, Lee S-R, Namkumg S, Jang T-S (2012) A study on the Nd-rich phase evolution in the Nd–Fe–B sintered magnet and its mechanism during post-sintering annealing. J Alloy Compd 537:261–268. https://doi.org/10.1016/j.jallcom.2012.05.075

    Article  CAS  Google Scholar 

  47. Mazilkin A, Straumal BB, Protasova SG, Gorji S, Straumal AB, Katter M, Schütz G, Barezky B (2021) Grain boundary oxide layers in NdFeB-based permanent magnets. Mater Des 199:109417. https://doi.org/10.1016/j.matdes.2020.109417

    Article  CAS  Google Scholar 

  48. Zeng H, Liu Z, Li W, Zhang J, Zhao L, Zhong X, Yu H, Guo B (2019) Significantly enhancing the coercivity of NdFeB magnets by ternary Pr-Al-Cu alloys diffusion and understanding the elements diffusion behavior. J Magn Magn Mater 471:97–104. https://doi.org/10.1016/j.jmmm.2018.09.080

    Article  CAS  Google Scholar 

  49. He J, Liao X, Lan X, Qiu W, Yu H, Zhang J, Fan W, Zhong X, Liu Z (2021) Annealed Al-Cr coating: a hard anti-corrosion coating with grain boundary modification effect for Nd–Fe–B magnets. J Alloy Compd 870:159229. https://doi.org/10.1016/j.jallcom.2021.159229

    Article  CAS  Google Scholar 

  50. Niessen AK, de Boer FR, Boom R, de Chatel PF, Mattens WCM, Miedema AR (1983) Model predictions for the enthalpy of formation of transition metal alloys II. Calphad 7:51–70. https://doi.org/10.1016/0364-5916(83)90030-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (No. U21A2052) and Jiangxi Provincial Key Science and Technology R&D Project (No. 20203ABC28W006).

Author information

Authors and Affiliations

Authors

Contributions

JH was involved in conceptualization, methodology, formal analysis, investigation, writing—original draft, writing—review and editing. WS contributed to conceptualization, methodology, formal analysis, investigation, writing—original draft. XL was involved in software, investigation, data curation, validation. WF, BZ, ZY and JC contributed to investigation, data curation, validation. HY and XZ were involved in resources, visualization. ZL contributed to writing—review and editing, supervision, funding acquisition, project administration. HM was involved in resources.

Corresponding author

Correspondence to Zhongwu Liu.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Handling Editor: Catalin Croitoru.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Song, W., Liu, X. et al. Macroscopically heterogeneous grain boundary diffusion process for efficient coercivity enhancement of Nd–Fe–B magnets. J Mater Sci 58, 5023–5036 (2023). https://doi.org/10.1007/s10853-023-08314-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08314-9

Navigation