Log in

Co3O4-C yolk-shell hollow spheres derived from ZIF-12-PVP@GO for superior anode performance in lithium-ion batteries

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Transitional metal oxides have attracted increasing attention as the most promising anode material for lithium-ion batteries (LIBs). However, due to the poor ionic conductivity and great structural changes in the process of Li+ insertion and extraction, the performance of the pristine materials in batteries still has a far way to go to satisfy requirements. In this article, using spherical ZIF-12 as a pyrolysis precursor, two Co3O4 hollow core-shell carbon nanocomposites (CHS@C and CHS@CG) were fabricated via a molecular precursor pyrolysis strategy. The synergistic effect of the yolk-shell hollow nanosphere structure shortens the diffusion path of ions, increases the contact area between the electrode and electrolyte, and provides a buffer space for the volume change in the electrochemical reaction. Both materials have excellent structural stability and good electrical conductivity. In comparison, the performance of CHS@CG is better, and the reversible specific capacity reaches 831 mAh·g−1 at 0.2 C after 400 cycles. In the galvanostatic charge–discharge process, the Coulombic efficiency reaches nearly 100%, exhibiting a good reversible cycle. The synthesis method of these electrode materials can provide a reference for making other energy storage equipments.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Scheme 2

Similar content being viewed by others

References

  1. Düehnen S, Betz J, Kolek M, Schmuch R, Winter M, Placke T (2020) Toward green battery cells: Perspective on materials and technologies. Small Methods 4(7):2070023

    Article  Google Scholar 

  2. Cresce AV, Xu K (2021) Aqueous lithium-ion batteries. Carbon Energy 3(5):721–751

    Article  Google Scholar 

  3. Galos J, Pattarakunnan K, Best AS, Kyratzis IL, Wang CH, Mouritz AP (2021) Energy storage structural composites with integrated lithium-ion batteries: A review. Adv Mater Technol 6:2001059

    Article  CAS  Google Scholar 

  4. Wu YP, Huang XK, Huang L, Chen JH (2020) Strategies for rational design of high-power lithium-ion batteries. Energy Environ Mater 4(1):19–45

    Article  Google Scholar 

  5. Lang XS, Wang XX, Liu Y, Cai KD, Li L, Zhang QG (2021) Cobalt-based metal organic framework (Co-MOFs)/graphene oxide composites as high-performance anode active materials for lithium-ion batteries. Int J Energ Res 45(3):4811–4820

    Article  CAS  Google Scholar 

  6. Wang JK, Wang HK, Li F, **e SM, Xu GY, She YY, Leung MKH, Liu TX (2019) Oxidizing solid Co into hollow Co3O4 within electrospun (carbon) nanofibers towards enhanced lithium storage performance. J Mater Chem A 7:3024–3030

    Article  CAS  Google Scholar 

  7. Fang S, Bresser D, Passerini S (2019) Transition metal oxide anodes for electrochemical energy storage in lithium-and sodium-ion batteries. Adv Energy Mater 10(1):1902485

    Article  Google Scholar 

  8. Wang DL, Yu YC, He H, Wang J, Zhou WD, Abruna HD (2015) Template-free synthesis of hollow-structured Co3O4 nanoparticles as high-performance anodes for lithium-ion batteries. ACS Nano 9(2):1775–1781

    Article  CAS  Google Scholar 

  9. Kim J, Chung MK, Ka BH, Ku JH, Park S, Ryu J, Oh SM (2010) the role of metallic Fe and carbon matrix in Fe2O3/Fe/carbon nanocomposite for lithium-ion batteries. J Electrochem Soc 157(4):412–417

    Article  Google Scholar 

  10. Ke FS, Huang L, Zhang B, Wei GZ, Xue LJ, Li JT, Sun SG (2012) Nanoarchitectured Fe3O4 array electrode and its excellent lithium storage performance. Electrochim Acta 78:585–591

    Article  CAS  Google Scholar 

  11. Li T, Li XH, Wang ZX, Guo HJ, Hu QY, Peng WJ (2016) Robust synthesis of hierarchical mesoporous hybrid NiO-MnCo2O4 microspheres and their application in Lithium-ion batteries. Electrochim Acta 191:392–400

    Article  CAS  Google Scholar 

  12. Ko S, Lee JI, Yang HS, Park S, Jeong U (2012) Mesoporous CuO particles threaded with CNTs for high-performance lithium-ion battery anodes. Adv Mater 24(32):4451–4456

    Article  CAS  Google Scholar 

  13. Wang Q, Zhang DA, Wang Q, Sun J, **ng LL, Xue XY (2014) High electrochemical performances of alpha-MoO3@MnO2 core-shell nanorods as lithium-ion battery anodes. Electrochim Acta 146:411–418

    Article  Google Scholar 

  14. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499

    Article  CAS  Google Scholar 

  15. Pham TN, Bui VKH, Lee YC (2021) Recent advances in hierarchical anode designs of TiO2-B nanostructures for lithium-ion batteries. Int J Energy Res 45(12):17532–17562

    Article  CAS  Google Scholar 

  16. Hu XR, Wei LS, Chen R, Wu QS, Li JF (2020) Reviews and prospectives of Co3O4-based nanomaterials for supercapacitor application. ChemistrySelect 5(17):5268–5288

    Article  CAS  Google Scholar 

  17. Yang YX, Chen X, Cao YL, Zhou WY, Sun H, Chai H (2020) Synthesis of homogeneous hollow Co3O4 microspheres for enhanced cycle life and electrochemical energy storage performance. ChemElectroChem 7(3):723–729

    Article  CAS  Google Scholar 

  18. Zhang CL, Lu BR, Cao FH, Yu ZL, Cong HP, Yu SH (2018) Hierarchically structured Co3O4@carbon porous fibers derived from electrospun ZIF-67/PAN nanofibers as anodes for lithium ion batteries. J Mater Chem A 6:12962–12968

    Article  CAS  Google Scholar 

  19. Kumar S, Srivastava R, Pak D, Chattopadhyay J (2021) Synthesis and energy applications of multi-shell micro/nano-spheres. Int J Energy Res 45(10):14389–14413

    Article  CAS  Google Scholar 

  20. Aijaz A, Masa J, Rosler C, **a W, Weide P, Botz AJR, Fischer RA, Schuhmann W, Muhler M (2016) Co@Co3O4 encapsulated in carbon nanotube-grafted nitrogen-doped carbon polyhedra as an advanced bifunctional oxygen electrode. Angew Chem Int Ed 55(12):4087–4091

    Article  CAS  Google Scholar 

  21. Wang CW, Tseng J, Peng SF, Hwu YK, Lin CK (2012) Functionalized polymer spheres via one-step photoinduced synthesis for antimicrobial activity and gene delivery. Nanotechnology 23(25):255103

    Article  Google Scholar 

  22. Mutuma BK, Matsoso B, Ranganathan K, Wamwangi D, Coville NJ (2016) Generation of open-ended, worm-like and graphene-like structures from layered spherical carbon materials. RCS Adv 6:20399–20408

    CAS  Google Scholar 

  23. Li M, Zhang JY, Gao H, Li F, Lindquist SE, Wu NQ, Wang RM (2016) Microsized BiOCl square nanosheets as ultraviolet photodetectors and photocatalysts. ACS Appl Mater Interfaces 8(10):6662–6668

    Article  CAS  Google Scholar 

  24. Luo JM, Tao XY, Zhang J, **a Y, Huang H, Zhang LY, Gan YP, Liang C, Zhang WK (2016) Sn4+ ion decorated highly conductive Ti3C2 MXene: promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano 10(2):2491–2499

    Article  CAS  Google Scholar 

  25. Yang C, Yao Y, Lian YB, Chen YJ, Shah R, Zhao XH, Chen MZ, Peng Y, Deng Z (2019) A double-buffering strategy to boost the lithium storage of botryoid MnOx/C anodes. Small 15(16):1900015

    Article  Google Scholar 

  26. Buğday N, Altin E, Altin S, Yaşar S (2022) High-performance electrodes for Li-ion cell: heteroatom-doped porous carbon/CoS structure and investigation of their structural and electrochemical properties. Int J Energy Res 46(13):18379–18393

    Article  Google Scholar 

  27. Zhang ZC, Chen YF, Xu XB, Zhang JC, **ang GL, He W, Wang X (2014) Well-defined metal-organic framework hollow nanocages. Angew Chem Int Ed 126(2):439–433

    Article  Google Scholar 

  28. Ameloot R, Vermoortele F, Vanhove W, Roeffaers MBJ, Sels BF, De Vos DE (2011) Interfacial synthesis of hollow metal-organic framework capsules demonstrating selective permeability. Nat Chem 3(5):382–387

    Article  CAS  Google Scholar 

  29. Cheng EB, Huang SS, Chen YD, Huang RT, Wang Q, Hu ZJ, Jiang Y, Li Z, Zhao B, Chen ZW (2019) Porous ZnO/Co3O4/N-doped carbon nanocages synthesized via pyrolysis of complex metal-organic framework (MOF) hybrids as an advanced lithium-ion battery anode. Acta Crystallogr C 75(7):969–978

    Article  CAS  Google Scholar 

  30. Li JH, Li FY, Liao JY, Li H, Dang D, Liu QB, Peng HJ (2020) Scalable construction of hollow multishell Co3O4 with mitigated interface reconstruction for efficient lithium storage. Adv Mater Interfaces 7(14):2000667

    Article  CAS  Google Scholar 

  31. Yan CS, Chen G, Zhou X, Sun JX, Lv CD (2016) Template-based engineering of carbon-doped Co3O4 hollow nanofibers as anode materials for lithium-ion batteries. Adv Funct Mater 26(9):1428–1436

    Article  CAS  Google Scholar 

  32. Chen YM, Yu L, Lou XW (2016) Hierarchical tubular structures composed of Co3O4 hollow nanoparticles and carbon nanotubes for lithium storage. Angew Chem Int Ed 55(20):5990–5993

    Article  CAS  Google Scholar 

  33. Zhang X, Dong P, Song MK (2019) Metal-organic frameworks for high-energy lithium batteries with enhanced safety: recent Progress and future perspectives. Batter Supercaps 2(7):591–626

    Article  CAS  Google Scholar 

  34. Kaneti YV, Tang J, Salunkhe RR et al (2017) Nanoarchitectured design of porous materials and nanocomposites from metalorganic frameworks. Adv Mater 29(12):1604898

    Article  Google Scholar 

  35. Wu YZ, Meng JS, Li Q, Niu CJ, Wang XP, Yang W, Li W, Mai LQ (2017) Interface-modulated fabrication of hierarchical yolk-shell Co3O4/C dodecahedrons as stable anodes for lithium and sodium storage. Nano Res 10:2364–2376

    Article  CAS  Google Scholar 

  36. Wang L, Wan JW, Wang JY, Wang D (2021) Small structures bring big things: performance control of hollow multishelled structures. Small Struct 2(1):2000041

    Article  CAS  Google Scholar 

  37. Mao D, Wan JW, Wang JY, Wang D (2019) Sequential templating approach: a groundbreaking strategy to create hollow multishelled structures. Adv Mater 31(38):1970274

    Article  Google Scholar 

  38. Wang JY, Wan JW, Yang NL, Li Q, Wang D (2020) Hollow multishell structures exercise temporal-spatial ordering and dynamic smart behaviour. Nat Rev Chem 4:159–168

    Article  CAS  Google Scholar 

  39. Wang JY, Wan JW, Wang D (2019) Hollow multishelled structures for promising applications: understanding the structure-performance correlation. Acc Chem Res 52(8):2169–2178

    Article  CAS  Google Scholar 

  40. Zhu MY, Tang JJ, Wei WJ, Li SJ (2020) Recent progress in the syntheses and applications of multishelled hollow nanostructures. Mater Chem Front 4:1105–1149

    Article  CAS  Google Scholar 

  41. Zhao JL, Yang M, Yang NL, Wang JY, Wang D (2020) Hollow micro-/nanostructure reviving lithium-sulfur batteries. Chem Res Chin Univ 36:313–319

    Article  CAS  Google Scholar 

  42. Wang ZM, Yang NL, Wang D (2020) When hollow multishelled structures (HoMSs) meet metal-organic frameworks (MOFs). Chem Sci 11(21):5359–5368

    Article  CAS  Google Scholar 

  43. Zhang ZF, Su XR, Zhu YY, Fang ZB, Luo XJ, Chen ZH (2020) Polypyrrole encapsulation-protected porous multishelled Co3O4 hollow microspheres for advanced all-solid-state asymmetric supercapacitors with boosted reaction kinetics and stability. Nanotechnology 31(25):255403

    Article  CAS  Google Scholar 

  44. Choi WH, Moon BC, Park DG, Choi JW, Kim KH, Shin JS, Kim MG, Choi KM, Kang JK (2020) Autogenous production and stabilization of highly loaded sub-nanometric particles within multishell hollow metal-organic frameworks and their utilization for high performance in LiO2 batteries. Adv Sci 7(9):2000283

    Article  CAS  Google Scholar 

  45. Ren H, Yu RB (2019) Hollow multi-shelled structures for energy conversion and storage applications. Inorg Chem Front 6:2239–2259

    Article  CAS  Google Scholar 

  46. Buğday N, Ates MN, Duygulu O, Deng WT, Ji XB, Altin S, Yaşar S (2022) ZIF-12-derived N-doped Fe/Co/S/@C nanoparticles as high-performance composite anode electrode materials for lithium-ion batteries. J Alloys Compd 928:67037

    Article  Google Scholar 

  47. Yin LH (2013) Study on the anode materials of Mn-Co3O4 for lithium ion secondary batteries. Asian J Chem 25(2):1155–1156

    Article  CAS  Google Scholar 

  48. Du HM, Jiao LF, Wang QH, Wang YJ, Yuan HT (2013) Facile carbonaceous microsphere templated synthesis of Co3O4 hollow spheres and their electrochemical performance in supercapacitors. Nano Res 6:87–98

    Article  CAS  Google Scholar 

  49. Zhang DH, Zou WB (2013) Decorating reduced graphene oxide with Co3O4 hollow spheres and their application in supercapacitor materials. Curr Appl Phys 13(8):1796–1800

    Article  Google Scholar 

  50. Li ZS, He MM, Bo B, Wei HJ, Liu YY, Wen H, Liu YS, Zhang K, Zhang PK, Li BJ (2021) Bi2S3 nanorods hosted on rGO sheets from pyrolysis of molecular precursors for efficient Li-Ion storage. Energy Environ Mater 4(4):577–585

    Article  CAS  Google Scholar 

  51. Liu YY, Sun K, Jiang JC, Zhou WS, Shang Y, Du CX, Li BJ (2021) Metallurgical pyrolysis toward Co@Nitrogen-doped carbon composite for lithium storage. Green Energy Environ 6(1):91–101

    Article  Google Scholar 

  52. He M, Yao JF, Liu Q, Zhong ZX, Wang HT (2013) Toluene-assisted synthesis of RHO-Type zeolitic imidazolate frameworks: synthesis and formation mechanism of ZIF-11 and ZIF-12. Dalton T 42(47):16608–16613

    Article  CAS  Google Scholar 

  53. Mei WM, Huang J, Zhu LP, Ye ZZ, Mai YJ, Tu JP (2012) Synthesis of porous rhombus-shaped Co3O4 nanorod arrays grown directly on a nickel substrate with high electrochemical performance. J Mater Chem 22(18):9315–9321

    Article  CAS  Google Scholar 

  54. Wang JY, Yang NL, Tang HJ, Dong ZH, ** Q, Yang M, Kisailus D, Zhao HJ, Tang ZY, Wang D (2013) Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries. Angew Chem Int Ed 52(25):6417–6420

    Article  CAS  Google Scholar 

  55. **ng CC, Liu YY, Su YH, Chen YH, Hao S, Wu XL, Wang XY, Cao HQ, Li BJ (2016) Structural evolution of Co-based metal organic frameworks in pyrolysis for synthesis of core-shells on nanosheets: Co@CoOx@Carbon-rGO composites for enhanced hydrogen generation activity. ACS Appl Mater Interfaces 8(24):15430–15438

    Article  CAS  Google Scholar 

  56. Huang GY, Xu SM, Lu SS, Li LY, Sun HY (2014) Micro-/nanostructured Co3O4 anode with enhanced rate capability for lithium-ion batteries. ACS Appl Mater Interfaces 6(10):7236–7243

    Article  CAS  Google Scholar 

  57. Madej E, Klink S, Schuhmann W, Ventosa E, Mantia FL (2015) Effect of the specific surface area on thermodynamic and kinetic properties of nanoparticle anatase TiO2 in lithium-ion batteries. J Power Sources 297:140–148

    Article  CAS  Google Scholar 

  58. Zhang SS (2020) Challenges and strategies for fast charge of Li-ion batteries. ChemElectroChem 7(17):3569–3577

    Article  CAS  Google Scholar 

  59. Zhai XM, Yang W, Li MY, Lu GQ, Liu JP, Zhang XL (2013) Noncovalent hybrid of CoMn2O4 spinel nanocrystals and poly (diallyldimethylammonium chloride) functionalized carbon nanotubes as efficient electrocatalysts for oxygen reduction reaction. Carbon 65:277–286

    Article  CAS  Google Scholar 

  60. Liu HC, Yen SK (2007) Characterization of electrolytic Co3O4 thin films as anodes for lithium-ion batteries. J Power Sources 166(2):478–484

    Article  CAS  Google Scholar 

  61. Wang YF, Li XS, He MM, Du H, Wu XL, Hao JH, Li BJ (2019) Core-shells on nanosheets: Fe3O4@carbon-reduced graphene oxide composites for lithium-ion storage. J Solid State Electr 23:237–244

    Article  CAS  Google Scholar 

  62. Zhao LZ, Wu HH, Yang CH, Zhang QB, Zhong GM, Zheng ZM, Chen HX, Wang JM, He K, Wang BL, Zhu T, Zeng XC, Liu ML, Wang MS (2018) Mechanistic origin of the high performance of Yolk@Shell Bi2S3@N-doped carbon nanowire electrodes. ACS Nano 12(12):12597–12611

    Article  CAS  Google Scholar 

  63. Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O’Keeffe M, Yaghi OM (2008) High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319(5865):939–943

    Article  CAS  Google Scholar 

  64. Ge XH, Yuan BH, Xu S, Xu P, Shi YP, Liu YY, Li ZS, Sun Q, Guo J, Liang EJ, Li BJ (2020) Anodic lithium ion battery material with negative thermal expansion. Ceram Int 46(11):19127–19134

    Article  CAS  Google Scholar 

  65. Li L, Zhang ZC, Ren SJ, Zhang BK, Yang SH, Cao BQ (2017) Construction of hollow Co3O4 cubes as a high-performance anode for lithium ion batteries. New J Chem 41(16):7960–7965

    Article  CAS  Google Scholar 

  66. Xu DY, Mu CP, **ang JY, Wen FS, Su C, Hao CX, Hu WT, Tang YF, Liu ZY (2016) Carbon-encapsulated Co3O4@CoO@Co nanocomposites for multifunctional applications in enhanced long-life lithium storage, supercapacitor and oxygen evolution reaction. Electrochim Acta 220:322–330

    Article  CAS  Google Scholar 

  67. Geng HB, Ang HX, Ding XG, Tan HT, Guo GL, Qu GL, Yang YG, Zheng JW, Yan QY, Gu HW (2016) Metal coordination polymer derived mesoporous Co3O4 nanorods with uniform TiO2 coating as advanced anodes for lithium ion batteries. Nanoscale 8:2967

    Article  CAS  Google Scholar 

  68. Gu D, Li W, Wang F, Bongard H, Spliethoff B, Schmidt W, Weidenthaler C, **a YY, Zhao DY, Schüth F (2015) Controllable synthesis of mesoporous peapod-like Co3O4@carbon nanotube arrays for high-performance lithium-ion batteries. Angew Chem Int Ed 54(24):7060–7064

    Article  CAS  Google Scholar 

  69. Wu RB, Qian XK, Rui XH, Liu H, Yadian B, Zhou K, Wei J, Yan QY, Feng XQ, Long Y, Wang LY, Huang YZ (2014) Zeolitic imidazolate framework 67-derived high symmetric porous Co3O4 hollow dodecahedra with highly enhanced lithium storage capability. Small 10:1932

    Article  CAS  Google Scholar 

  70. Huang G, Zhang F, Du X, Qin Y, Yin D, Wang L (2015) Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries. ACS Nano 9(2):1592–1599

    Article  CAS  Google Scholar 

  71. Kaneti YV, Zhang J, He Y, Wang Z, Tanaka S, Hossain MSA, Pan Z, **ang B, Yang Q, Yamauchi Y (2017) Fabrication of an MOF-derived heteroatom-doped Co/CoO/carbon hybrid with superior sodium storage performance for sodium-ion batteries. J Mater Chem A 5:15356–15366

    Article  CAS  Google Scholar 

  72. Liu X, Zou F, Liu K, Qiang Z, Taubert CJ, Ustriyana P, Vogt BD, Zhu Y (2017) A binary metal organic framework derived hierarchical hollow Ni3S2/Co9S8/N-doped carbon composite with superior sodium storage performance. J Mater Chem A 5:11781–11787

    Article  CAS  Google Scholar 

  73. Park G, Kang Y (2018) Design and synthesis of spherical multicomponent aggregates composed of core-shell, yolk-shell, and hollow nanospheres and their lithium-ion storage performances. Small 14(13):1703957

    Article  Google Scholar 

  74. Wang B, Cheng YF, Su H, Cheng M, Li Y, Geng HB, Dai ZF (2020) Boosting transport kinetics of cobalt sulfides yolk-shell spheres by anion do** for advanced lithium and sodium storage. Chemsuschem 13(16):4078–4085

    Article  CAS  Google Scholar 

  75. Reddy MV, Prithvi G, Loh KP, Chowdari BVR (2014) Li storage and impedance spectroscopy studies on Co3O4, CoO, and CoN for Li-Ion batteries. ACS Appl Mater Interfaces 6(1):680–690

    Article  CAS  Google Scholar 

  76. Dou YH, Xu JT, Ruan BY, Liu QN, Pan YD, Sun ZQ, Dou SX (2016) Atomic layer-by-Layer Co3O4/graphene composite for high performance lithium-ion batteries. Adv Energy Mater 6(8):1501835

    Article  Google Scholar 

  77. Wang Q, Yu BW, Li X, **ng LL, Xue XY (2016) Core-shell Co3O4/ZnCo2O4 coconut-like hollow spheres with extremely high performance as anode materials for lithium-ion batteries. J Mater Chem A 4:425–433

    Article  CAS  Google Scholar 

  78. Zhang QB, Chen HX, Han X, Cai JJ, Yang Y, Liu ML, Zhang KL (2016) Graphene-encapsulated nanosheet-assembled zinc-nickel-cobalt oxide microspheres for enhanced lithium storage. Chemsuschem 9(2):186–196

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial supports from the National Natural Science Foundation of China (Nos. 11874328, 31901272, 21401168), Key Scientific and Technological Project of Henan Province (Grant No. 212102210490), and Key Scientific Research Project of Colleges and Universities in Henan Province (No. 22A140032) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **anghong Ge or Baojun Li.

Ethics declarations

Competing interest

The authors declare no competing financial interest.

Additional information

Handling Editor: Mark Bissett.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 30489 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, X., Ge, X., **ng, C. et al. Co3O4-C yolk-shell hollow spheres derived from ZIF-12-PVP@GO for superior anode performance in lithium-ion batteries. J Mater Sci 58, 355–368 (2023). https://doi.org/10.1007/s10853-022-08047-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-08047-1

Navigation