Log in

Tl-based TlAgX (X = S, Se) monolayers with ultra-low lattice thermal conductivity and high ZT: a first-principles study

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Based on first-principles and Boltzmann transport equation, the electronic structure and thermoelectric properties of derivative TlAgX (X = S, Se) monolayers of KAgSe monolayer are predicted. The results show that the TlAgX (X = S, Se) single layers are indirect bandgap semiconductors. TlAgS and TlAgSe monolayers have the low lattice thermal conductivity of 0.20 and 0.17 W m−1 K−1 at 700 K, respectively. Such ultra-low lattice thermal conductivity is ascribed to the small phonon group velocity, large Grüneisen parameters, and short phonon relaxation time, with greatly suppressed phonon transport. The n-do** TlAgS and TlAgSe monolayers have high ZT values in wide temperature range (300–700 K) and the maximal ZT value reaches 9.1 and 10.3 at 700 K, respectively. The excellent thermal and electrical transport properties and resulting good thermoelectric performance indicate that the TlAgX (X = S, Se) monolayers are good thermoelectric candidate materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Sootsman J, Chung D, Kanatzidis M (2010) New and old concepts in thermoelectric materials. Angew Chem Int Ed 48:8616

    Article  Google Scholar 

  2. Liu W, Jie Q, Kim HS, Ren Z (2015) Current progress and future challenges in thermoelectric power generation: from materials to devices. Acta Mater 87:357

    Article  CAS  Google Scholar 

  3. Disalvo FJ (1999) Thermoelectric cooling and power generation. Science 285:703

    Article  CAS  Google Scholar 

  4. Snyder GJ, Toberer ES (2008) Complex thermoelectric materials. Nat Mater 7:105

    Article  CAS  Google Scholar 

  5. Lan Y, Minnich AJ, Gang C, Ren Z (2010) Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach. Adv Funct Mater 20:357

    Article  CAS  Google Scholar 

  6. Wang H, Pei Y, LaLonde AD, Snyder GJ (2011) Heavily doped p-type PbSe with high thermoelectric performance: an alternative for PbTe. Adv Mater 23:1366

    Article  CAS  Google Scholar 

  7. Wanke R, Hassink G, Stephanos C, Rastegar I, Braun W, Mannhart J (2016) Magnetic-field-free thermoelectronic power conversion based on graphene and related two-dimensional materials. J Appl Phys 119:244507

    Article  Google Scholar 

  8. Tan G, Zhao LD, Kanatzidis MG (2016) Rationally designing high-performance bulk thermoelectric materials. Chem Rev 116(19):12123–12149

    Article  CAS  Google Scholar 

  9. Zhao LD, Tan G, Hao S et al (2016) Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science 351(6269):141–144

    Article  CAS  Google Scholar 

  10. Li W, Lin S, Weiss M et al (2018) Crystal structure induced ultralow lattice thermal conductivity in thermoelectric Ag9AlSe6. Adv Energy Mater 8(18):1800030

    Article  Google Scholar 

  11. Shi X, Wu A, Liu W et al (2018) Polycrystalline SnSe with extraordinary thermoelectric property via nanoporous design. ACS Nano 12(11):11417–11425

    Article  CAS  Google Scholar 

  12. Lin S, Li W, Li S et al (2017) High thermoelectric performance of Ag9GaSe6 enabled by low cutoff frequency of acoustic phonons. Joule 1(4):816–830

    Article  CAS  Google Scholar 

  13. Venkatasubramanian R, Silvola E, Colpitts T, O’Quinn B (2001) Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413:597

    Article  CAS  Google Scholar 

  14. Ohta H, Kim S, Mune Y et al (2007) Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nat Mater 6:129

    Article  CAS  Google Scholar 

  15. Li L, Chen Z, Hu Y et al (2013) Single-layer single-crystalline SnSe nanosheets. J Am Chem Soc 135:1213

    Article  CAS  Google Scholar 

  16. Wu C-W, Wu Y-R (2016) Optimization of thermoelectric properties for rough nano-ridge GaAs/AlAs superlattice structure. AIP Adv 6:115201

    Article  Google Scholar 

  17. Hung NT, Nugraha ART, Yang T, Zhang Z, Saito R (2019) Thermoelectric performance of monolayer InSe improved by convergence of multivalley bands. J Appl Phys 125:082502

    Article  Google Scholar 

  18. Hicks LD, Dresselhaus MS (1993) Effect of quantum-well structures on the thermoelectric figure of merit. Phys Rev B Condens Matter 47:12727

    Article  CAS  Google Scholar 

  19. Uematsu Y, Terada T, Sato K, Ishibe T, Nakamura Y (2020) Low thermal conductivity in single crystalline epitaxial germanane films. Appl Phys Express 13: 055503 (4pp).

  20. Ding G, Gao GY, Huang Z, Zhang W, Yao K (2016) Thermoelectric properties of monolayer MSe2 (M=Zr, Hf): low lattice thermal conductivity and a promising figure of merit. Nanotechnology 27:375703

    Article  Google Scholar 

  21. Huang Q, Ma J, Xu D, Hu R, Luo X (2020) High thermoelectric figure of merit in monolayer Tl2O from first principles. J Appl Phys 128:185111

    Article  CAS  Google Scholar 

  22. Zhu X-L, Yang H, Zhou W-X, Wang B, Xu N, **e G (2020) KAgX (X = S, Se): high-performance layered thermoelectric materials for medium-temperature applications. ACS AMI 12:36102

    CAS  Google Scholar 

  23. Gu J, Qu X (2020) Excellent thermoelectric properties of monolayer RbAgM (M= Se and Te): first-principles calculations. Phys Chem Chem Phys 22:26364

    Article  CAS  Google Scholar 

  24. Skoug EJ, Morelli DT (2011) Role of lone-pair electrons in producing minimum thermal conductivity in nitrogen-group chalcogenide compounds. Phys Rev Lett 107:235901

    Article  Google Scholar 

  25. Du MH, Singh DJ (2010) Enhanced born charge and proximity to ferroelectricity in thallium halides. Phys Rev B Condens Matter 81:144114

    Article  Google Scholar 

  26. Mukhopadhyay S, Parker DS, Sales BC, Puretzky AA, McGuire MA, Lindsay L (2018) Two-channel model for ultralow thermal conductivity of crystalline Tl3VSe4. Science 360:1455

    Article  CAS  Google Scholar 

  27. He X, Singh DJ, Boon-On P, Lee M-W, Zhang L (2018) Dielectric behavior as a screen in rational searches for electronic materials: metal pnictide sulfosalts. J Am Chem Soc 140:18058

    Article  CAS  Google Scholar 

  28. Kurosaki K, Li G, Ohishi Y, Muta H, Yamanaka S (2014) Enhancement of thermoelectric efficiency of CoSb3-based skutterudites by double filling with K and Tl. Front Chem 2:84

    Article  Google Scholar 

  29. Haas P, Tran F, Blaha P, Schwarz K, Laskowski R (2009) Insight into the performance of GGA functionals for solid-state calculations. Phys Rev B 80(195109):1

    Google Scholar 

  30. Perdew JP, Burke K, Ernzerhof M (1998) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    Article  Google Scholar 

  31. Kresse GG, Furthmüller JJ (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B Condens Matter 54:11169

    Article  CAS  Google Scholar 

  32. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. J Non Cryst Solids 47:558

    CAS  Google Scholar 

  33. Kresse G, Furthmüller J, Hafner J (1994) Theory of the crystal structures of selenium and tellurium: the effect of generalized-gradient corrections to the local-density approximation. Phys Rev B Condens Matter 50:13181

    Article  CAS  Google Scholar 

  34. Marom N, Tkatchenko A, Rossi M et al (2011) Dispersion interactions with density-functional theory: benchmarking semiempirical and interatomic pairwise corrected density functionals. J Chem Theory Comput 7:3944

    Article  CAS  Google Scholar 

  35. Madsen GK, Singh DJ (2006) A code for calculating band-structure dependent quantities. Comput Phys Commun 175:67

    Article  CAS  Google Scholar 

  36. Bardeen J, Shockley WS (1950) Deformation potentials and mobilities in non-polar crystals. Phys Rev 80:72

    Article  CAS  Google Scholar 

  37. Ballone P, Andreoni W, Car R, Parrinello M (1988) Equilibrium structures and finite temperature properties of silicon microclusters from ab initio molecular-dynamics calculations. Phys Rev Lett 60:271

    Article  CAS  Google Scholar 

  38. Li W, Carrete J, Katcho NA, Mingo N (2014) ShengBTE: a solver of the Boltzmann transport equation for phonons. Comput Phys Commun 185:1747–1758

    Article  CAS  Google Scholar 

  39. Choi M, Oba F, Tanaka I (2008) First-principles study of native defects and lanthanum impurities in NaTaO3. Phys Rev B 78:014115

    Article  Google Scholar 

  40. Li W, Lindsay L, Broido DA, Stewart DA, Mingo N (2012) Thermal conductivity of bulk and nanowire Mg2SixSn1−x alloys from first principles. Phys Rev B 86:174307

    Article  Google Scholar 

  41. **e G, Shen Y (2015) Size and edge roughness dependence of thermal conductivity for vacancy-defective graphene ribbons. Phys Chem Chem Phys 17:8822

    Article  CAS  Google Scholar 

  42. Togo A, Oba F, Tanaka I (2008) First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys Rev B 78:134106

    Article  Google Scholar 

  43. Cutler M, Mott NF (1969) Observation of Anderson localization in an electron gas. Phys Rev 181:1336

    Article  CAS  Google Scholar 

  44. Hsu KF, Loo S, Guo F et al (2004) Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science 303(5659):818–821

    Article  CAS  Google Scholar 

  45. Jonson M, Mahan G (1980) Mott’s formula for the thermopower and the Wiedemann-Franz law. Phys Rev B 21:4223

    Article  CAS  Google Scholar 

  46. ** J, Long M, Tang L, Wang D, Shuai Z (2012) First-principles prediction of charge mobility in carbon and organic nanomaterials. Nanoscale 4:4348

    Article  CAS  Google Scholar 

  47. Bardeen J, Shockley W (1950) Deformation potentials and mobilities in non-polar crystals. Phys Rev 80(1):72

    Article  CAS  Google Scholar 

  48. Lindsay L, Broido DA, Mingo N (2011) Flexural phonons and thermal transport in multilayer graphene and graphite. Phys Rev B Condens Matter 83:1417

    Article  Google Scholar 

  49. Gu X, Yang R (2015) First-principles prediction of phononic thermal conductivity of silicene: a comparison with graphene. J Appl Phys 117:025102

    Article  Google Scholar 

  50. Solanki GK, Deshpande MP, Agarwal MK, Patel PD, Vaidya SN (2003) Thermoelectric power factor measurements in GeSe single crystals grown using different transporting agents. J Mater Sci 22:985

    CAS  Google Scholar 

  51. Chaput L (2013) Direct solution to the linearized phonon Boltzmann equation. Phys Rev Lett 110:265506

    Article  Google Scholar 

  52. Srivastava GP, Kresin V (1991) The physics of phonons. Phys Today 44:75–76

    Article  Google Scholar 

  53. Enamul H, Anwar HM (2018) First-principles study of elastic, electronic, thermodynamic, and thermoelectric transport properties of TaCoSn. Results Phys 10:458–465

    Article  Google Scholar 

  54. Wu Li, Natalio M (2014) Thermal conductivity of fully filled skutterudites: role of the filler. Phys Rev B 89:184304

    Article  Google Scholar 

  55. Li W, Mingo N (2015) Ultralow lattice thermal conductivity of the fully filled skutterudite YbFe4Sb12 due to the flat avoided-crossing filler modes. Phys Rev B 91:144304

    Article  Google Scholar 

  56. Zhao L-D, Lo S-H, Zhang Y et al (2014) Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508:373

    Article  CAS  Google Scholar 

  57. Wang N, Shen C, Sun Z et al (2022) High-temperature thermoelectric monolayer Bi2TeSe2 with high power factor and ultralow thermal conductivity. ACS Appl Energy Mater 5:2564

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the support by the National Natural Science Foundation of China (Grant No. 61671199) and the Natural Science Foundation of Hebei Province (Grant No. A2020202010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Li.

Additional information

Handling Editor: Ghanshyam Pilania.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Li, J., **, Y. et al. Tl-based TlAgX (X = S, Se) monolayers with ultra-low lattice thermal conductivity and high ZT: a first-principles study. J Mater Sci 57, 21607–21619 (2022). https://doi.org/10.1007/s10853-022-08028-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-08028-4

Navigation