Log in

Ammonia synthesis by enhanced photocatalysis of N2 over oxygen-sulfur co-doped semi-crystalline g-C3N4

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Photocatalytic fixation of nitrogen is the most attractive method for the sustainable production of ammonia (NH3), which has attracted increasing attention, but the development of a highly active, stable and low-cost photocatalyst remains a great challenge. Herein, O, S co-doped carbon nitride (HGCNOS) based on carbon nitride (GCN) material was fabricated by a one-pot hydrothermal method at 180 °C. Our results revealed that O, S atoms were successfully doped into GCN and HGCNOS showed better crystallinity and periodicity, shorter interlayer distances and great resistance to electron–hole recombination. The results of nitrogen fixation experiments showed that the ammonium ion yield of HGCNOS photocatalyst was as high as 0.23 mg/L/mg-cat after 2 h. And the minuscule changes in photocatalytic performance after 3 consecutive cycles (4 h for each cycle), demonstrated excellent cycling stability. DFT calculations show that the introduction of O, S atoms promotes photo-excited charge separation, facilitates electrons’ leap and is more conducive to N2 adsorption, and consequently, an excellent photo-reactivity of HGCNOS. The results acquired may shed light on general do** strategies for designing potentially efficient photocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Rafiqul I, Weber C, Lehmann B, Voss A (2005) Energy efficiency improvements in ammonia production—perspectives and uncertainties. Energy 30(13):2487

    Article  CAS  Google Scholar 

  2. Medford AJ, Hatzell MC (2017) Photon-driven nitrogen fixation: current progress, thermodynamic considerations, and future outlook. ACS Catal 7(4):2624

    Article  CAS  Google Scholar 

  3. Wang X, Maeda K, Thomas A, Takanabe K, **n G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8(1):76

    Article  CAS  Google Scholar 

  4. Takata T, Pan C, Domen K (2016) Design and development of oxynitride photocatalysts for overall water splitting under visible light irradiation. ChemElectroChem 3(1):31

    Article  CAS  Google Scholar 

  5. Ma B, Liu Y, Li J, Lin K, Liu W, Zhan H (2016) Mo2N: An efficient non-noble metal cocatalyst on CdS for enhanced photocatalytic H2 evolution under visible light irradiation. Int J Hydrog Energy 41(47):22009

    Article  CAS  Google Scholar 

  6. Kroke E, Schwarz M, Horath-Bordon E, Kroll P, Noll B, Norman AD (2002) Tri-s-triazine derivatives. Part I. From trichloro-tri-s-triazine to graphitic C3N4 structures. New J Chem 26(5):508

    Article  CAS  Google Scholar 

  7. Edoardo R, Sai MG, Michele M, Giacomo F, Arianna A, Mario C, Manuela B, Paolo F, Maurizio P, David B, Roberto L (2022) Radical defects modulate the photocatalytic response in 2D-graphitic carbon nitride. Chem Sci 13(34):9927

    Article  Google Scholar 

  8. Li F, Huang Y, Gao C, Wu X (2021) The enhanced photo-catalytic CO2 reduction performance of g-C3N4 with high selectivity by coupling CoNiSx. Mater Res Bull 144:111488

    Article  CAS  Google Scholar 

  9. Ma Y, Huangfu C, Guo S, Wu S, Wang Z, Yao L, Huang X, Liu Y, Zhao W (2022) Enhanced photocatalytic nitrogen fixation on oxygen doped high specific surface area g-C3N4 under simulated sunlight. J Photoch Photobio A 433:114208

    Article  CAS  Google Scholar 

  10. Li J, Shen B, Hong Z, Lin B, Gao B, Chen Y (2012) A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity. Chem Comm (Cambridge, England) 48(98):12017

    Article  CAS  Google Scholar 

  11. Hang S, Liu Y, Gu P, Ma R, Wen T, Zhao G, Li L, Ai Y, Hu C, Wang X (2019) Enhanced photodegradation of toxic organic pollutants using dual-oxygen-doped porous g-C3N4: mechanism exploration from both experimental and DFT studies. Appl Catal B Environ 248:1

    Article  Google Scholar 

  12. Wang K, Li Q, Liu B, Cheng B, Ho W, Yu J (2015) Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. Appl Catal B Environ 176–177:44

    Google Scholar 

  13. Cao L, Wang R, Wang D (2015) Synthesis and characterization of sulfur self-doped g-C3N4 with efficient visible-light photocatalytic activity. Mater Lett 149:50

    Article  CAS  Google Scholar 

  14. Ma H, Li Y, Li S, Liu N (2015) Novel PO codoped g-C3N4 with large specific surface area: hydrothermal synthesis assisted by dissolution–precipitation process and their visible light activity under anoxic conditions. Appl Surf Sci 357:131

    Article  CAS  Google Scholar 

  15. Ding K, Wen L, Huang M, Zhang Y, Lu Y, Chen Z (2016) How does the B, F-monodo** and B/F-codo** affect the photocatalytic water-splitting performance of g-C3N4? Phys Chem Chem Phys 18(28):19217

    Article  CAS  Google Scholar 

  16. Lu Y-C, Chen J, Wang A-J, Bao N, Feng J-J, Wang W, Shao L (2015) Facile synthesis of oxygen and sulfur co-doped graphitic carbon nitride fluorescent quantum dots and their application for mercury(ii) detection and bioimaging. J Mater Chem C 3(1):73

    Article  CAS  Google Scholar 

  17. Cao S, Fan B, Feng Y, Chen H, Jiang F, Wang X (2018) Sulfur-doped g-C3N4 nanosheets with carbon vacancies: general synthesis and improved activity for simulated solar-light photocatalytic nitrogen fixation. Chem Eng J 353:147

    Article  CAS  Google Scholar 

  18. Cui J, Liang S, Wang X, Zhang J (2015) First principle modeling of oxygen-doped monolayer graphitic carbon nitride. Mater Chem Phys 161:194

    Article  CAS  Google Scholar 

  19. Qiu P, Xu C, Chen H, Jiang F, Wang X, Lu R, Zhang X (2017) One step synthesis of oxygen doped porous graphitic carbon nitride with remarkable improvement of photo-oxidation activity: role of oxygen on visible light photocatalytic activity. Appl Catal B Environ 206:319

    Article  CAS  Google Scholar 

  20. Song L, Zhang S, Wu X, Tian H, Wei Q (2012) Graphitic C3N4 photocatalyst for esterification of benzaldehyde and alcohol under visible light radiation. Ind Eng Chem Res 51(28):9510

    Article  CAS  Google Scholar 

  21. Huang Y, Ning L, Feng Z, Ma G, Yang S, Su Y, Hong Y, Wang H, Peng L, Li J (2021) Graphitic carbon nitride nanosheets with low ON1-do** content as efficient photocatalysts for organic pollutant degradation. Environl Sci Nano 8(2):460

    Article  CAS  Google Scholar 

  22. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B Condens 54(16):11169

    Article  CAS  Google Scholar 

  23. Korona T (2013) A coupled cluster treatment of intramonomer electron correlation within symmetry-adapted perturbation theory: benchmark calculations and a comparison with a density-functional theory description. Mol Phys 111(24):3705

    Article  CAS  Google Scholar 

  24. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27(15):1787

    Article  CAS  Google Scholar 

  25. Wang H, Sun X, Li D, Zhang X, Chen S, Shao W, Tian Y, **e Y (2017) Boosting hot-electron generation: exciton dissociation at the order-disorder interfaces in polymeric photocatalysts. J Am Chem Soc 139(6):2468

    Article  CAS  Google Scholar 

  26. Cao S, Low J, Yu J, Jaroniec M (2015) Polymeric photocatalysts based on graphitic carbon nitride. Adv Mater 27(13):2150

    Article  CAS  Google Scholar 

  27. Feng X, Chen H, Jiang F, Wang X (2018) Enhanced visible-light photocatalytic nitrogen fixation over semicrystalline graphitic carbon nitride: oxygen and sulfur co-do** for crystal and electronic structure modulation. J Colloid Interf Sci 509:298

    Article  CAS  Google Scholar 

  28. Men Y, Rieger J, Strobl G (2003) Role of the entangled amorphous network in tensile deformation of semicrystalline polymers. Phys Rev Lett 91(9):095502

    Article  Google Scholar 

  29. Lu Y-C, Chen J, Wang A-J, Bao N, Feng J-J, Wang W, Shao L (2015) Facile synthesis of oxygen and sulfur co-doped graphitic carbon nitride fluorescent quantum dots and their application for mercury(ii) detection and bioimaging. J Mater Chem C 3(1):73

    Article  CAS  Google Scholar 

  30. Wang H, Lu Q, Li M, Li H, Liu Y, Li H, Zhang Y, Yao S (2018) Electrochemically prepared oxygen and sulfur co-doped graphitic carbon nitride quantum dots for fluorescence determination of copper and silver ions and biothiols. Anal Chim Acta 1027:121

    Article  CAS  Google Scholar 

  31. Zhang M, Zhang Y, Gan M, **e L, Wang J, Jia W, Bian W, Shuang S, Choi MMF (2022) Facile synthesis of sulfur and oxygen co-doped graphitic carbon nitride quantum dots for on-off detection of Cu2+ in real samples and living cells. Methods Appl Fluores 10(3):035011

    Article  Google Scholar 

  32. Ge L, Han C (2012) Synthesis of MWNTs/g-C3N4 composite photocatalysts with efficient visible light photocatalytic hydrogen evolution activity. Appl Catal B Environ 117–118:268

    Article  Google Scholar 

  33. Lin Z, Wang X (2013) Nanostructure engineering and do** of conjugated carbon nitride semiconductors for hydrogen photosynthesis. Angew Chem Int Ed 52(6):1735

    Article  CAS  Google Scholar 

  34. Liu G, Niu P, Sun C, Smith SC, Chen Z, Lu GQ, Cheng H-M (2010) Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J Am Chem Soc 132(33):11642

    Article  CAS  Google Scholar 

  35. Fan Q, Liu J, Yu Y, Zuo S, Li B (2017) A simple fabrication for sulfur doped graphitic carbon nitride porous rods with excellent photocatalytic activity degrading RhB dye. Appl Surf Sci 391:360

    Article  CAS  Google Scholar 

  36. Huang Z-F, Song J, Pan L, Wang Z, Zhang X, Zou J-J, Mi W, Zhang X, Wang L (2015) Carbon nitride with simultaneous porous network and O-do** for efficient solar-energy-driven hydrogen evolution. Nano Energy 12:646

    Article  CAS  Google Scholar 

  37. Sun D, Li L, Yu Y, Huang L, Meng F, Su Q, Ma S, Xu B (2021) B and cyano groups co-doped g-C3N4 with multiple defects for photocatalytic nitrogen fixation in ultrapure water without hole scavengers. J Colloid Interf Sci 600:639

    Article  CAS  Google Scholar 

  38. Jun Y-S, Lee EZ, Wang X, Hong WH, Stucky GD, Thomas A (2013) From melamine-cyanuric acid supramolecular aggregates to carbon nitride hollow spheres. Adv Funct Mater 23(29):3661

    Article  CAS  Google Scholar 

  39. Yao XX, Zhang WJ, Huang JL, Du ZW, Hong XK, Chen XF, Hu XL, Wang XH (2020) Enhanced photocatalytic nitrogen fixation of Ag/B-doped g-C3N4 nanosheets by one-step in-situ decomposition-thermal polymerization method. Appl Catal A Gen 601:117647

    Article  CAS  Google Scholar 

  40. Ding RL, Cao SH, Chen H, Jiang F, Wang X (2019) Preparation of tellurium doped graphitic carbon nitride and its visible-light photocatalytic performance on nitrogen fixation. Coll Surf A Physicochem Eng Asp 563:263

    Article  CAS  Google Scholar 

  41. Huang T, Pan S, Shi L, Yu A, Wang X, FU Y (2020) Hollow porous prismatic graphitic carbon nitride with nitrogen vacancies and oxygen do**: a high-performance visible light-driven catalyst for nitrogen fixation. Nanoscale 12(3):1833–1841. https://doi.org/10.1039/C9NR08705B

    Article  CAS  Google Scholar 

  42. Xue YJ, Guo YC, Liang ZG, Cui HZ, Tian J (2019) Porous g-C3N4 with nitrogen defects and cyano groups for excellent photocatalytic nitrogen fixation without co-catalysts. J Colloid Interf Sci 556:206

    Article  CAS  Google Scholar 

  43. Li Z, Gu GZ, Hu SZ, Zou X, Wu G (2019) Promotion of activation ability of N vacancies to N-2 molecules on sulfur-doped graphitic carbon nitride with outstanding photocatalytic nitrogen fixation ability. Chin J Catal 40(8):1178

    Article  CAS  Google Scholar 

  44. Zhao YF, Sun XL, Hu SZ, Wang H, Wang F, Li P (2020) Effect of oxygen on photocatalytic nitrogen fixation performance of N vacancy-embedded graphitic carbon nitride. Chem J Chin Univ 41(1):132

    CAS  Google Scholar 

  45. Maimaitizi H, Abulizi A, Zhang T, Okitsu K, Zhu JJ (2020) Facile photo-ultrasonic assisted synthesis of flower-like Pt/N-MoS2 microsphere as an efficient sonophotocatalyst for nitrogen fixation. Ultrason Sonochem 63:104956

    Article  CAS  Google Scholar 

  46. Hu L, Yan Z, Mo X, Peng X, Chen L (2020) Hierarchical Co/ZIF-8 as an efficient catalyst for cycloaddition of CO2 and epoxide. Microporous Mesopororus Mat 294:1387–1811

    Google Scholar 

  47. Zhu BC, Zhang JF, Jiang CJ, Cheng B, Yu JG (2017) First principle investigation of halogen-doped monolayer g-C3N4 photocatalyst. Appl Catal B Environ 207:27

    Article  CAS  Google Scholar 

  48. Zhang JF, Wageh S, Al-Ghamdi A, Yu JG (2016) New understanding on the different photocatalytic activity of wurtzite and zinc-blende CdS. Appl Catal B Environ 192:101

    Article  CAS  Google Scholar 

  49. Li J, Wu D, Iocozzia J, Du H, Liu X, Yuan Y, Zhou W, Li Z, Xue Z, Lin Z (2019) Achieving efficient incorporation of π-electrons into graphitic carbon nitride for markedly improved hydrogen generation. Angew Chem Int Ed 58(7):1985

    Article  CAS  Google Scholar 

  50. Wang Z, Chen Y, Zhang L, Cheng B, Yu J, Fan J (2020) Step-scheme CdS/TiO2 nanocomposite hollow microsphere with enhanced photocatalytic CO2 reduction activity. J Mater Sci Technol 56:143

    Article  Google Scholar 

  51. Zhu B, Wageh S, Al-Ghamdi AA, Yang S, Tian Z, Yu J (2019) Adsorption of CO2, O2, NO and CO on s-triazine-based g-C3N4 surface. Catal Today 335:117

    Article  CAS  Google Scholar 

  52. Wang Z, Cheng B, Zhang L, Yu J, Tan H (2021) BiOBr/NiO S-scheme heterojunction photocatalyst for CO2 photoreduction. Solar RRL 6(1):2100587

    Article  Google Scholar 

  53. Wang Z, Fan J, Cheng B, Yu J, Xu J (2020) Nickel-based cocatalysts for photocatalysis: hydrogen evolution, overall water splitting and CO2 reduction. Mater Today Phys 15:100279

    Article  Google Scholar 

  54. Qiu P, Liang Z, Liu X, Qian X, Cui H, Tian J (2020) Synthesis of salicylic acid-modified graphite carbon nitride for enhancing photocatalytic nitrogen fixation. J Colloid Interface Sci 571:318

    Article  CAS  Google Scholar 

  55. Liang C, Niu H-Y, Guo H, Niu C-G, Huang D-W, Yang Y-Y, Liu H-Y, Shao B-B, Feng H-P (2020) Insight into photocatalytic nitrogen fixation on graphitic carbon nitride: defect-dopant strategy of nitrogen defect and boron dopant. Chem Eng J 396:125395

    Article  CAS  Google Scholar 

  56. Zhao W, Zhang J, Zhu X, Zhang M, Tang J, Tan M, Wang Y (2014) Enhanced nitrogen photofixation on Fe-doped TiO2 with highly exposed (101) facets in the presence of ethanol as scavenger. Appl Catal B Environ 144:468

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (51876174) and the Natural Science Foundation of Jiangsu Province, China (BK20191189). We thank technicians at Instrument Analysis Center of **’an Jiaotong University for their assistance with XPS, XRD and STEM analysis, respectively. The work was carried out at Shanxi Supercomputing Center of China, and the calculation were performed on TianHe-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Guo.

Additional information

Handling Editor: Pedro Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2588 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Cheng, J., Jiang, Z. et al. Ammonia synthesis by enhanced photocatalysis of N2 over oxygen-sulfur co-doped semi-crystalline g-C3N4. J Mater Sci 57, 21869–21884 (2022). https://doi.org/10.1007/s10853-022-08025-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-08025-7

Navigation