Log in

Quantitative evaluation of the short-range order strengthening effect on solid solution and GB strength of Mg–Y alloys by ab initio calculations

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Short-range order (SRO) plays an important role in improving the mechanical properties of Mg alloys. In this study, we performed first-principle calculations to quantify the effects of SRO on solid solution strengthening (SSS) and grain boundary (GB) in Mg alloys. The SRO has a positive effect on decreasing the stacking fault (SF) energy. It is also identified that the SRO structure prefers to segregate in the twin boundaries (TB) than the SF due to lower segregation energies of the SRO on the TB than it is on the SF. In order to quantitatively correlate the SRO strengthening with the SSS, critical resolved shear stress (CRSS) is proposed based on the volume and chemical misfits. The newly formulated strengthening model predicts the tensile strength of binary Mg–Y alloy accurately, proving that the ab initio calculations can evaluate alloy properties quantitatively from atomistic scale.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References:

  1. Prasad SVS, Prasad SB, Verma K, Mishra RK, Kumar V, Singh S (2022) The role and significance of magnesium in modern day research-a review. J Alloy Compd 10:1–61

    CAS  Google Scholar 

  2. Wang XJ, Xu DK, Wu RZ, Chen XB, Peng QM, ** L, **n YC, Zhang ZQ, Liu Y, Chen XH, Chen G, Deng KK, Wang HY (2018) What is going on in magnesium alloys? J Mater Sci Technol 34:245–247

    Article  Google Scholar 

  3. Zhou X, Le QC, Ren L, Hu CL, Wang T, Liao QY, Li DD, Li XQ, Liu CM (2022) High-performance magnesium alloy with multi-element synergistic strengthening: design, microstructure, and tensile properties. J Alloy Compd 918:165746

    Article  CAS  Google Scholar 

  4. Fu L, Le Q, Hu W, Zhang J, Wang J (2020) Strengths and ductility enhanced by micro-alloying Sm/La/Ca to Mg-0.5Zn-0.2Mn alloy. J Mater Res Technol 9:6834–6849

    Article  CAS  Google Scholar 

  5. Zhang DP, Zhang JH, Xu T, Zhang YQ, Che CJ, Zhang DD, Meng J (2022) Significant improvement in creep property of a Mg–Yb based alloy via introducing nano-spaced stacking faults. Mater Sci Eng A 845:143238

    Article  CAS  Google Scholar 

  6. Li YJ, Fang Y, Wang C, Hua ZM, Gao Y, Zha M, Wang HY (2022) Enhanced strength-ductility synergy achieved through twin boundary pinning in a bake-hardened Mg–2Zn-0.5Ca alloy. Mater Sci Eng A 831:142239

    Article  CAS  Google Scholar 

  7. Wei K, **ao LR, Gao B, Li L, Liu Y, Ding ZG, Liu W, Zhou H, Zhao YH (2020) Enhancing the strain hardening and ductility of Mg-Y alloy by introducing stacking faults. J Magnes Alloy 8:1221–1227

    Article  CAS  Google Scholar 

  8. Nie YJ, Wei DJ, Li X, Zhang XB (2021) Recent developments on corrosion behaviors of Mg alloys with stacking fault or long period stacking ordered structures. J Magnes Alloy 9:1123–1146

    Article  CAS  Google Scholar 

  9. Cheng X, Yuan Y, Chen T, Zheng Z, Ma L, Jiang B, Tang A, Pan F (2021) The effects of second-alloying-element on the formability of Mg-Sn alloys in respect of the stacking fault energies of slip systems. Mater Today Commun 29:102829

    Article  CAS  Google Scholar 

  10. Yasi JA, Hector LG, Trinkle DR (2010) First-principles data for solid-solution strengthening of magnesium: from geometry and chemistry to properties. Acta Mater 58:5704–5713

    Article  CAS  Google Scholar 

  11. Moitr AA, Kim GS, Horstemeyer FM (2014) Solute effect on basal and prismatic slip systems of Mg[J]. J Phys Condens Matter 26:2–11

    Google Scholar 

  12. Su H, Zhang C, Wang S, Tian G, Xue C, Wang J, Guan S (2022) Local atomic ordering strategy for high strength Mg alloy design by first-principle calculations. J Alloy Compd 907:164491

    Article  CAS  Google Scholar 

  13. Wang Q, Liu L, Jiang B, Fu J, Tang A, Jiang Z, Sheng H, Zhang D, Huang G, Pan F (2020) Twin nucleation, twin growth and their effects on annealing strengths of Mg–Al–Zn–Mn sheets experienced different pre-compressive strains. J Alloy Compd 815:152310

    Article  CAS  Google Scholar 

  14. Wang X, Hu Y, Yu K, Mahajan S, Beyerlein IJ, Lavernia EJ, Rupert TJ, Schoenung JM (2022) Room temperature deformation-induced solute segregation and its impact on twin boundary mobility in a Mg-Y alloy. Scr Mater 209:114375

    Article  CAS  Google Scholar 

  15. Cui Y, Li Y, Wang Z, Lei Q, Koizumi Y, Chiba A (2017) Regulating twin boundary mobility by annealing in magnesium and its alloys. Int J Plast 99:1–18

    Article  CAS  Google Scholar 

  16. Hui J, Zhang X, Liu T, Liu W, Wang B (2022) First-principles calculation of twin boundary energy and strength/embrittlement in hexagonal close-packed titanium. Mater Des 213:110331

    Article  CAS  Google Scholar 

  17. Pei Z, Li R, Nie J-F, Morris JR (2019) First-principles study of the solute segregation in twin boundaries in Mg and possible descriptors for mechanical properties. Mater Des 165:107574

    Article  CAS  Google Scholar 

  18. Abaspour S, Zambelli V, Dargusch M, Cáceres CH (2016) Atomic size and local order effects on the high temperature strength of binary Mg alloys. Mater Sci Eng A 673:114–121

    Article  CAS  Google Scholar 

  19. Zhao L, Zhang M, Wang J, Shi B, ** P (2020) Effects of initial grain size and orientation on the twin behavior in ZK60 Mg alloy. Mater Charact 167:110496

    Article  CAS  Google Scholar 

  20. Jamali A, Ma A, Llorca J (2022) Influence of grain size and grain boundary misorientation on the fatigue crack initiation mechanisms of textured AZ31 Mg alloy. Scr Mater 207:114304

    Article  CAS  Google Scholar 

  21. Kim JM, Kim SJ, Kang JH (2022) Effects of short-range ordering and stacking fault energy on tensile behavior of nitrogen-containing austenitic stainless steels. Mater Sci Eng A 836:142730

    Article  CAS  Google Scholar 

  22. Abaspour S, Cáceres CH (2016) High temperature strength and stress relaxation behavior of dilute binary Mg alloys. Metall Mater Trans A 47:1313–1321

    Article  CAS  Google Scholar 

  23. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50

    Article  CAS  Google Scholar 

  24. Wang JS, Horsfield A, Schwingenschlögl U, Lee PD (2010) Heterogeneous nucleation of solid Al from the melt by TiB2 and Al3Ti: an ab initio molecular dynamics study. Phys Rev B 82:184203

    Article  Google Scholar 

  25. Xu WW, Horsfield AP, Wearing D, Lee PD (2015) First-principles calculation of Mg/MgO interfacial free energies. J Alloy Compd 650:228–238

    Article  CAS  Google Scholar 

  26. Xu WW, Horsfield AP, Wearing D, Lee PD (2016) Diversification of MgO//Mg interfacial crystal orientations during oxidation: a density functional theory study. J Alloy Compd 688:1233–1240

    Article  CAS  Google Scholar 

  27. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  28. van de Walle A (2009) Multicomponent multisublattice alloys, nonconfigurational entropy and other additions to the alloy theoretic automated toolkit. Calphad 33:266–278

    Article  Google Scholar 

  29. van de Walle A, Asta M, Ceder G (2002) The alloy theoretic automated toolkit: a user guide. Calphad 26:539–553

    Article  Google Scholar 

  30. Walker GB, Marezio M (1959) Lattice parameters and zone overlap in solid solutions of lead in magnesium. Acta Metall 7:769–773

    Article  CAS  Google Scholar 

  31. Muzyk M, Nguyen-Manh D, Kurzydłowski KJ, Baluc NL, Dudarev SL (2011) Phase stability, point defects, and elastic properties of W-V and W-Ta alloys. Phys Rev B 84:104115

    Article  Google Scholar 

  32. Zhang C, Liu C, Li X, Liu K, Tian G, Wang J (2022) Quantifying the influence of secondary phases on corrosion in multicomponent Mg alloys using X-ray computed microtomography. Corros Sci 195:110010

    Article  CAS  Google Scholar 

  33. Juarez-Perez EJ, Ono LK, Maeda M, Jiang Y, Hawash Z, Qi Y (2018) Photodecomposition and thermal decomposition in methylammonium halide lead perovskites and inferred design principles to increase photovoltaic device stability. J Mater Chem A 6:9604–9612

    Article  CAS  Google Scholar 

  34. Chen C, Niu J, Huang H, Zhu D, Nie J-F, Yuan G (2022) Basal-plane stacking fault energies of biodegradable Zn-based alloys: a first-principles study of alloying effects. Mater Lett 309:131413

    Article  CAS  Google Scholar 

  35. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19

    Article  CAS  Google Scholar 

  36. Liu X-Y, Adams JB, Ercolessi F, Moriarty JA (1996) EAM potential for magnesium from quantum mechanical forces. Modell Simul Mater Sci Eng 4:293–303

    Article  CAS  Google Scholar 

  37. Stukowski A (2009) Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Modell Simul Mater Sci Eng 18:015012

    Article  Google Scholar 

  38. Barrett CD, Tschopp MA, El Kadiri H (2012) Automated analysis of twins in hexagonal close-packed metals using molecular dynamics. Scr Mater 66:666–669

    Article  CAS  Google Scholar 

  39. Li X, Zhang C, Wang J, Huang H, Wang S (2020) Atomic-level insights into nano-salt droplets wetting on the MgO surface using molecular dynamics simulations. Corros Sci 167:108549

    Article  CAS  Google Scholar 

  40. Huang Z, Chen F, Shen Q, Zhang L, Rupert TJ (2018) Uncovering the influence of common nonmetallic impurities on the stability and strength of a Σ5 (310) grain boundary in Cu. Acta Mate 148:110–122

    Article  CAS  Google Scholar 

  41. Kumar A, Wang J, Tomé CN (2015) First-principles study of energy and atomic solubility of twinning-associated boundaries in hexagonal metals. Acta Mater 85:144–154

    Article  CAS  Google Scholar 

  42. Lejček P, Šob M, Paidar V, Vitek V (2013) Why calculated energies of grain boundary segregation are unreliable when segregant solubility is low. Scr Mater 68:547–550

    Article  Google Scholar 

  43. Ulutan D, Ozel T (2011) Machining induced surface integrity in titanium and nickel alloys: a review. Int J Adv Manuf Technol 51:250–280

    Google Scholar 

  44. Zhang L, Attar H (2015) Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: a review. Adv Eng Mater 18:463–475

    Article  Google Scholar 

  45. Ren D, Li S, Wang H, Hou W, Hao Y, ** W, Yang R, Misra RDK, Murr LE (2019) Fatigue behavior of Ti-6Al-4V cellular structures fabricated by additive manufacturing technique. J Mater Sci Technol 35:285–294

    Article  CAS  Google Scholar 

  46. Yuasa M, Mabuchi M (2010) Bond mobility mechanism in grain boundary embrittlement: first-principles tensile tests of Fe with a P-segregated Σ3 grain boundary. Phys Rev B 82:094108

    Article  Google Scholar 

  47. Wang S, Wang J, Zhang C, Xue C (2022) Continuous precipitate modes of the δ′-Al3Li phase in Al-Li alloys. J Alloys Compd 904:163800

    Article  CAS  Google Scholar 

  48. Zhu Q, Li Y, Ding Z, Wang J, Liu Y, Zhang H, **e T, Wang M, Zhu H, Ying T, Liu W, Zeng X (2021) Unveiling precipitation behavior in Mg-Y based alloys. Mater Des 202:109570

    Article  CAS  Google Scholar 

  49. Tan J, Sun YH, **e HB, Sun BZ, Qi Y (2018) Atomic-resolution investigation of Y-rich solid solution with an invariable orientation in Mg−Y binary alloy. J Alloys Compd 766:716–720

    Article  CAS  Google Scholar 

  50. Muzyk M, Pakiela Z, Kurzydlowski KJ (2012) Generalized stacking fault energy in magnesium alloys: density functional theory calculations. Scr Mater 66:219–222

    Article  CAS  Google Scholar 

  51. Shang SL, Wang WY, Zhou BC, Wang Y, Darling KA, Kecskes LJ, Mathaudhu SN, Liu ZK (2014) Generalized stacking fault energy, ideal strength and twinnability of dilute Mg-based alloys: a first-principles study of shear deformation. Acta Mater 67:168–180

    Article  CAS  Google Scholar 

  52. Ding Z, Li S, Liu W, Zhao Y (2015) Modeling of stacking fault energy in hexagonal-close-packed metals. Adv Mater Sci Eng 2015:639519

    Article  Google Scholar 

  53. Pei Z, Li R (2017) The effect of yttrium on the generalized stacking fault energies in Mg. Comput Mater Sci 133:1–5

    Article  CAS  Google Scholar 

  54. Tane M, Kimizuka H, Hagihara K, Suzuki S, Mayama T, Sekino T, Nagai Y (2015) Effects of stacking sequence and short-range ordering of solute atoms on elastic properties of Mg–Zn–Y alloys with long-period stacking ordered structures. Acta Mater 96:170–188

    Article  CAS  Google Scholar 

  55. Cui X-Y, Yen H-W, Zhu S-Q, Zheng R, Ringer SP (2015) On the universality of Suzuki segregation in binary Mg alloys from first principles. J Alloy Compd 620:38–41

    Article  CAS  Google Scholar 

  56. Wu YF, Li S, Ding ZG, Liu W, Zhao YH, Zhu YT (2016) Effect of charge redistribution factor on stacking-fault energies of Mg-based binary alloys. Scr Mater 112:101–105

    Article  CAS  Google Scholar 

  57. Guo W, Su J, Lu W, Liebscher CH, Kirchlechner C, Ikeda Y, Körmann F, Liu X, Xue Y, Dehm G (2020) Dislocation-induced breakthrough of strength and ductility trade-off in a non-equiatomic high-entropy alloy. Acta Mater 185:45–54

    Article  CAS  Google Scholar 

  58. Niu R, An X, Li L, Zhang Z, Mai Y-W, Liao X (2022) Mechanical properties and deformation behaviours of submicron-sized Cu–Al single crystals. Acta Mater 223:117460

    Article  CAS  Google Scholar 

  59. Tadmor EB, Hai S (2003) A Peierls criterion for the onset of deformation twinning at a crack tip. J Mech Phys Solids 51:765–793

    Article  CAS  Google Scholar 

  60. Rice JR (1992) Dislocation nucleation from a crack tip: an analysis based on the Peierls concept. J Mech Phys Solids 40:239–271

    Article  CAS  Google Scholar 

  61. Qian Q, Liu Z-Q, Jiang Y, Wang Y-R, An X-L, Song M (2021) Basal stacking fault induced twin boundary gliding, twinning disconnection and twin growth in hcp Ti from the first-principles. Trans Nonferrous Met Soc China 31:382–390

    Article  CAS  Google Scholar 

  62. Somekawa H, Mukai T (2013) Hall-Petch relation for deformation twinning in solid solution magnesium alloys. Mater Sci Eng 561:378–385

    Article  CAS  Google Scholar 

  63. Achmad TL, Fu W, Chen H, Zhang C, Yang Z-G (2018) Effect of solute segregation on the intrinsic stacking fault energy of Co-based binary alloys: a first-principles study. J Alloys Compd 748:328–337

    Article  CAS  Google Scholar 

  64. Bai Y, Ye B, Guo J, Wang L, Kong X, Ding W (2020) Mechanical properties and yield asymmetry of Mg-Y-Zn alloys: competitive behavior of second phases. Mater Charact 164:110301

    Article  CAS  Google Scholar 

  65. Kula A, Jia X, Mishra RK, Niewczas M (2017) Flow stress and work hardening of Mg-Y alloys. Int J Plast 92:96–121

    Article  CAS  Google Scholar 

  66. Kim K-H, Hwang JH, Jang H-S, Jeon JB, Kim NJ, Lee B-J (2018) Dislocation binding as an origin for the improvement of room temperature ductility in Mg alloys. Mater Sci Eng 715:266–275

    Article  CAS  Google Scholar 

  67. Wang WY, Tang B, Shang S-L, Wang J, Li S, Wang Y, Zhu J, Wei S, Wang J, Darling KA, Mathaudhu SN, Wang Y, Ren Y, Hui XD, Kecskes LJ, Li J, Liu Z-K (2019) Local lattice distortion mediated formation of stacking faults in Mg alloys. Acta Mater 170:231–239

    Article  CAS  Google Scholar 

  68. Ahmad R, Wu Z, Groh S, Curtin WA (2018) Pyramidal II to basal transformation of <c + a> edge dislocations in Mg-Y alloys. Scr Mater 155:114–118

    Article  CAS  Google Scholar 

  69. Li N, Yang L, Wang C, Monclús MA, Shi D, Molina-Aldareguía JM (2021) Deformation mechanisms of basal slip, twinning and non-basal slips in Mg–Y alloy by micropillar compression. Mater Sci Eng 819:141408

    Article  CAS  Google Scholar 

  70. **ao Z, Hu J, Zhang X, Huang Y (2020) Uncovering the Zr segregation behavior and its effect on the fracture strength of Al Σ5 (210) [100] symmetrical tilt grain boundary: insight from first principles calculation. Mater Today Commun 25:101268

    Article  CAS  Google Scholar 

  71. Huang Z, Turlo V, Wang X, Chen F, Shen Q, Zhang L, Beyerlein IJ, Rupert TJ (2021) Dislocation-induced Y segregation at basal-prismatic interfaces in Mg. Comput Mater Sci 188:110241

    Article  CAS  Google Scholar 

  72. Zhou J, Wang J, Qin J, Cheng K, Zhan C, Li X, Zhao G, Zhou Y (2019) A new diagrammatic method for the prediction of solid solubility in Mg alloys based on the short-range ordered structure. Comput Mater Sci 159:32–42

    Article  CAS  Google Scholar 

  73. Guo Y, Zhang S, Wei B, Legut D, Germann TC, Zhang H, Zhang R (2019) A generalized solid strengthening rule for biocompatible Zn-based alloys, a comparison with Mg-based alloys. PCCP 21:22629–22638

    Article  CAS  Google Scholar 

  74. Somekawa H, Schuh CA (2011) Effect of solid solution elements on nanoindentation hardness, rate dependence, and incipient plasticity in fine grained magnesium alloys. Acta Mater 59:7554–7563

    Article  CAS  Google Scholar 

  75. Li Y-J, Fang Y, Wang C, Hua Z-M, Gao Y, Zha M, Wang H-Y (2022) Enhanced strength-ductility synergy achieved through twin boundary pinning in a bake-hardened Mg–2Zn-0.5Ca alloy. Mater Sci Eng 831:142239

    Article  CAS  Google Scholar 

  76. Wu X, You Y-W, Kong X-S, Chen J-L, Luo GN, Lu G-H, Liu CS, Wang Z (2016) First-principles determination of grain boundary strengthening in tungsten: dependence on grain boundary structure and metallic radius of solute. Acta Mater 120:315–326

    Article  CAS  Google Scholar 

  77. Rose JH, Ferrante J, Smith JR (1981) Universal binding energy curves for metals and bimetallic interfaces. Phys Rev Lett 47:675–678

    Article  CAS  Google Scholar 

  78. Zhang H, Li Y, Ding Z, **e T, Liu R, Li Y, Zhang D, Zhu Q, Shang X, Zeng X (2021) Origin of twin-like 336–4 tilt boundary and associated solute segregation in a high strain rate deformed Mg-Y alloy. Scr Mater 201:113982

    Article  CAS  Google Scholar 

  79. Fang Q, Li M, Zhao X, Yuan L, Wang B, **a C, Ma F (2022) van der Waals graphene/MoS2 heterostructures: tuning the electronic properties and Schottky barrier by applying a biaxial strain. Mater Adv 3:624–631

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Numbers 52073030). We are grateful for the help from all members at the Integrated Computational Materials Engineering (ICME) lab, Bei**g Institute of Technology, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junsheng Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Ghanshyam Pilania.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, H., Tian, G., Zhang, C. et al. Quantitative evaluation of the short-range order strengthening effect on solid solution and GB strength of Mg–Y alloys by ab initio calculations. J Mater Sci 57, 19986–20001 (2022). https://doi.org/10.1007/s10853-022-07823-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07823-3

Navigation