Log in

The influence of calcium hydroxide crystal morphology on the desulfurization of cement kiln flue gas

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ca(OH)2, a widely available and low-cost calcium-based desulfurizer, needs further improvement in calcium utilization in flue gas desulfurization. In this experiment, Ca(OH)2 crystals with different morphologies were prepared by do** impurity ions including SO42− and SiO32− by precipitation method, which played directing role in the process of crystal growth. The prepared Ca(OH)2 crystals were applied to cement kiln flue gas desulfurization environment to investigate the effect of crystal morphology on flue gas desulfurization. The observed results illustrated that Ca(OH)2 prepared by SO42− as impurity ion in hexagonal plate shape presents the best desulfurization performance with desulfurization efficiency up to 93%. The structural characterization of Ca(OH)2 crystals by XRD and SEM, and the investigation of the reasons for desulfurization by BET, EDS, and XPS showed that the hexagonal plate-shaped Ca(OH)2 crystals increased the specific surface area and had the highest elemental sulfur content of 5.04% on the (100) crystal plane, and the high surface energy on the (100) plane led to the high reactivity. This confirms the guiding significance of hexagonal plate-like morphology for improving the desulfurization performance of Ca(OH)2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. National Bureau of Statistics. http://www.stats.gov.cn/

  2. Renedo MJ, Fernández-Ferreras J (2016) Characterization and behavior of modified calcium-hydroxide-based sorbents in a dry desulfurization process. Energy Fuel 30(8):6350–6354. https://doi.org/10.1021/acs.energyfuels.6b01106

    Article  CAS  Google Scholar 

  3. Chang J, Tian HJ, Jiang JG, Zhang C, Guo QJ (2016) Simulation and experimental study on the desulfurization for smelter off-gas using a recycling ca-based desulfurizer. Chem Eng J 291:225–237. https://doi.org/10.1016/j.cej.2015.12.064

    Article  CAS  Google Scholar 

  4. Li Y, Masateru SM (1999) High calcium utilization and gypsum formation for dry desulfurization process. Energy Fuel 13(5):1015–1020. https://doi.org/10.1021/ef9802781

    Article  CAS  Google Scholar 

  5. Zhao RF, Liu HD, Ye SF, Chen YF (2006) Ca-based sorbents modified with humic acid for flue gas desulfurization. Ind Eng Chem Res 45(21):7120–7125. https://doi.org/10.1021/ie051253

    Article  CAS  Google Scholar 

  6. Shin HG, Kim H, Kim YN, Lee HS (2009) Preparation and characterization of high surface area calcium hydroxide sorbent for SO2 removal. Curr Appl Phys 9(3):S276–S279. https://doi.org/10.1016/j.cap.2009.01.036

    Article  Google Scholar 

  7. Osaka Y, Tsujiguchi T, Kodama A, Huang HY (2020) Improvement of dry desulfurization performance using activated calcium carbonate by amorphous citric acid complex method for diesel gas purification. J Mater Cycles Waste 22(2):470–478. https://doi.org/10.1007/s10163-019-00942-1

    Article  CAS  Google Scholar 

  8. Ruiz-Alsop RN, Rochelle GT (1986) Effect of deliquescent salt additives on the reaction of SO2 with Ca(OH)2. ACS Symp Ser 319:208–222. https://doi.org/10.1021/bk-1986-0319.ch017

    Article  CAS  Google Scholar 

  9. Galmarini S, Aimable A, Ruffray N, Bowen P (2011) Changes in portlandite morphology with solvent composition: atomistic simulations and experiment. Cem Concr Res 41(12):1330–1338. https://doi.org/10.1016/j.cemconres.2011.04.009

    Article  CAS  Google Scholar 

  10. Shen YS, Tang ML, Shen XD (2016) Growth Habit of Portlandite Crystal in Cement Paste. J Chin Ceram Soc 44(02):232–238. https://doi.org/10.14062/j.issn.0454-5648.2016.02.08

    Article  CAS  Google Scholar 

  11. Iizuka A, Morishita Y, Shibata E, Takatoh C, Cho H (2020) Basic study of the reaction of calcium hydroxide with hydrogen chloride using single crystals. Ind Eng Chem Res 59(20):9699–9704. https://doi.org/10.1021/acs.iecr.9b06967

    Article  CAS  Google Scholar 

  12. Daud FDM, Vignesh K, Sreekantan S, Mohamed AR, Kang M, Kwak BS (2016) Ca(OH)2 nano-pods: investigation on the effect of solvent ratio on morphology and CO2 adsorption capacity. RSC Adv 6(42):3631–3638. https://doi.org/10.1039/c5ra27771j

    Article  CAS  Google Scholar 

  13. Shen YS (2016) Growth habit of Portlandite crystal in coprecipitation and cementitious systems. MEng Dissertation, Nan**g University of Technology, China

  14. Harutyunyan VS (2012) Adsorption energy of stoichiometric molecules and surface energy at morphologically important facets of a Ca(OH)2 crystal. Mater Chem Phys 134(1):200–213. https://doi.org/10.1016/j.matchemphys.2012.02.052

    Article  CAS  Google Scholar 

  15. Schnelle KB Jr, Dunn RF, Ternes ME (2015) Air pollution control technology handbook. CRC Press, Los Angeles

    Book  Google Scholar 

  16. Shen P, Meng H (2012) Material chemistry. Sun Yat-sen University, China

    Google Scholar 

  17. Sangwal K (1993) Effect of impurities on the processes of crystal growth. J Cryst Growth 128(1–4):1236–1244. https://doi.org/10.1016/S0022-0248(07)80129-1

    Article  CAS  Google Scholar 

  18. Lahav M, Leiserowitz L (2001) The effect of solvent on crystal growth and morphology. Chem Eng Sci 56(7):2245–2253. https://doi.org/10.1016/S0009-2509(00)00459-0

    Article  CAS  Google Scholar 

  19. Liu F, Garofalini SH, King-Smith RD, Vanderbilt D (1993) Structural and electronic properties of sodium metasilicate. Chem Phys Lett 215(4):401–404. https://doi.org/10.1016/0009-2614(93)85736-8

    Article  CAS  Google Scholar 

  20. Yang QZ, Gao XT, Fang L, Zhang SB, Cheng FQ (2021) Controllable crystal growth of Mg(OH)2 hexagonal flakes and their surface modification using graft polymerization. Adv Powder Technol 32(7):2634–2644. https://doi.org/10.1016/j.apt.2021.05.036

    Article  CAS  Google Scholar 

  21. Yang J, Hou DS, Ding QJ (2018) Ionic hydration structure, dynamics and adsorption mechanism of sulfate and sodium ions in the surface of calcium silicate hydrate gel: a molecular dynamics study. Appl Surf Sci 448:559–570. https://doi.org/10.1016/j.apsusc.2018.04.071

    Article  CAS  Google Scholar 

  22. Brunet F, Bertani P, Charpentier T, Nonat A, Virlet J (2004) Application of 29Si homonuclear and 1h–29Si heteronuclear NMR correlation to structural studies of calcium silicate hydrates. J Phys Chem B 108(40):15494–15502. https://doi.org/10.1021/jp031174g

    Article  CAS  Google Scholar 

  23. Fernández I, Garea A, Irabien A (1998) SO2 reaction with Ca(OH)2 at medium temperatures (300–425°C): kinetic behaviour. Chem Eng Sci 53(10):1869–1881. https://doi.org/10.1016/S0009-2509(98)00029-3

    Article  Google Scholar 

  24. Chiarello G, Lumachi A, Parmigiani F, Ghetti P, Michele GD (1990) An XPS study of SO2 on a CaO surface derived from Ca(OH)2. J Electron Spectrosc Relat Phenom 50(2):229–237. https://doi.org/10.1016/0368-2048(90)87067-X

    Article  CAS  Google Scholar 

  25. Ho CS, Shih SM, Lee CD (1996) Influence of CO2 and O2 on the reaction of Ca(OH)2 under spray-drying flue gas desulfurization conditions. Ind Eng Chem Res 35:3915–3919. https://doi.org/10.1016/0368-2048(90)87067-X

    Article  CAS  Google Scholar 

  26. Shih SM, Ho CS, Song YS, Lin JP (1999) Kinetics of the reaction of Ca(OH)2 with CO2 at low temperature. Ind Eng Chem R es 38:1316–1322. https://doi.org/10.1021/ie980508z

    Article  CAS  Google Scholar 

  27. Ho CS, Shih SM, Liu CF, Chu HM, Lee CD (2002) Kinetics of the sulfation of Ca(OH)2 at low temperatures. Ind Eng Chem Res 41(14):3357–3364. https://doi.org/10.1021/ie010887n

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by Bei**g Natural Science Foundation-Education Commission joint program, grant number KZ202010005013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **aoyu Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: M. Grant Norton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Wu, H., Chang, L. et al. The influence of calcium hydroxide crystal morphology on the desulfurization of cement kiln flue gas. J Mater Sci 57, 18287–18297 (2022). https://doi.org/10.1007/s10853-022-07801-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07801-9

Navigation