Log in

Structural, mechanical and corrosion resistance of phosphorus-doped TiAlN thin film

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Doped TiAlN thin films are gaining unprecedented attention in recent times due to their functionality and tuneable properties to meet specific demands. The present article focuses on the influence of phosphorous-doped TiAlN thin films deposited using high-power impulse magnetron sputtering. Thin films of different elemental compositions of Ti, Al, and P were sputtered on AISI 5206 steel. The thin film cross-sectional morphology and architecture revealed dense and columnar structures. It was indicated that the (111) diffraction peaks in the XRD pattern shifted to higher angles, while the transverse optics (TO)/longitudinal optics (LO) frequency in the optic phonons region of Raman spectra shifted to the right with the modulation wavelength as the Al and P compositions increase. The elementary composition influences the mechanical properties with the maximum hardness of 28 GPa, and adhesion strength of 15 N attained in thin film with the highest Al and P content. The corrosion rate in all the thin films was reduced by at least two orders of magnitude compared with the uncoated samples. The addition of P increases the corrosion resistance of TiAl(P)N thin films.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. Koch GH, Brongers MPH, Thompson NG, et al (2002) No title. Corrosion cost and preventive strategies in the United States

  2. Yu H, Zhang Z, Han M (2012) Metal corrosion for nanofabrication. Small 8:2621–2635

    Article  CAS  Google Scholar 

  3. de Fatima Montemor M (2014) Functional and smart coatings for corrosion protection: a review of recent advances. Surf Coat Technol 258:17–37

    Article  Google Scholar 

  4. Veprek S, Veprek-heijman M (2008) Industrial applications of superhard nanocomposite coatings. Surf Coat Technol 202:5063–5073. https://doi.org/10.1016/j.surfcoat.2008.05.038

    Article  CAS  Google Scholar 

  5. Maurya DK, Sardarinejad A, Alameh K (2014) Recent developments in R.F. magnetron sputtered thin films for pH sensing applications: an overview. Coatings 4:756–771. https://doi.org/10.3390/coatings4040756

    Article  Google Scholar 

  6. Abegunde OO, Akinlabi ET, Oladijo OP et al (2019) Overview of thin film deposition techniques. AIMS Mater Sci 6:174–199

    Article  CAS  Google Scholar 

  7. Alami J, Bolz S, Sarakinos K (2009) High power pulsed magnetron sputtering: fundamentals and applications. J Alloys Compd 483:530–534. https://doi.org/10.1016/j.jallcom.2008.08.104

    Article  CAS  Google Scholar 

  8. Sarakinos K, Alami J, Konstantinidis S (2010) High power pulsed magnetron sputtering: a review on scientific and engineering state of the art. Surf Coat Technol 204:1661–1684

    Article  CAS  Google Scholar 

  9. Chen Y-I, Lin K-Y, Wang H-H, Lin K-C (2014) Thermal stability of TaN, CrTaN, TaSiN, and CrTaSiN hard coatings in oxygen-containing atmospheres. Surf Coat Technol 259:159–166

    Article  CAS  Google Scholar 

  10. El-Hossary FM, El-Rahman AMA, Raaif M, Ghareeb DA (2016) Properties of TiAlN coating deposited by MPIIID on TiN substrates. Appl Phys A 122:1–11

    Article  CAS  Google Scholar 

  11. Ananthakumar R, Subramanian B, Kobayashi A, Jayachandran M (2012) Electrochemical corrosion and materials properties of reactively sputtered TiN/TiAlN multilayer coatings. Ceram Int 38:477–485

    Article  CAS  Google Scholar 

  12. Greczynski G, Lu J, Jensen J et al (2014) A review of metal-ion-flux-controlled growth of metastable TiAlN by HIPIMS/DCMS co-sputtering. Surf Coat Technol 257:15–25. https://doi.org/10.1016/j.surfcoat.2014.01.055

    Article  CAS  Google Scholar 

  13. Pfeiler M, Zechner J, Penoy M et al (2009) Improved oxidation resistance of TiAlN coatings by do** with Si or B. Surf Coat Technol 203:3104–3110. https://doi.org/10.1016/J.SURFCOAT.2009.03.036

    Article  CAS  Google Scholar 

  14. Barshilia HC, Niranjan K, Srinivas G et al (2022) On the thermal stability and performance evaluation of Si doped transition metal nitride/oxide nanolayered multilayer-based spectrally selective absorber for high-temperature photothermal applications. Sol Energy Mater Sol Cells 241:111746–111757. https://doi.org/10.1016/J.SOLMAT.2022.111746

    Article  CAS  Google Scholar 

  15. Zhou J, Hu C, Zhang J et al (2021) Effect of B-do** on the mechanical properties, thermal stability and oxidation resistance of TiAlN coatings. Int J Refract Met Hard Mater 98:105531–105540. https://doi.org/10.1016/J.IJRMHM.2021.105531

    Article  CAS  Google Scholar 

  16. Baker MA, Klose S, Rebholz C et al (2002) Evaluating the microstructure and performance of nanocomposite PVD TiAlBN coatings. Surf Coat Technol 151–152:338–343. https://doi.org/10.1016/S0257-8972(01)01657-7

    Article  Google Scholar 

  17. Liang M, Wang C, Liang C et al (2021) The effect of Cr and Cr-Ni do** on the properties of TiAlN coatings. J Phys Conf Ser 2044(1):012077–012084

    Article  Google Scholar 

  18. Danek M, Fernandes F, Cavaleiro A, Polcar T (2017) Influence of Cr additions on the structure and oxidation resistance of multilayered TiAlCrN films. Surf Coat Technol 313:158–167. https://doi.org/10.1016/J.SURFCOAT.2017.01.053

    Article  CAS  Google Scholar 

  19. Tillmann W, Grisales D, Echavarría AM et al (2022) Effect of Ag do** on the microstructure and electrochemical response of TiAlN coatings deposited by DCMS/HiPIMS magnetron sputtering. J Mater Eng Perform 31:3811–3825. https://doi.org/10.1007/s11665-021-06467-9

    Article  CAS  Google Scholar 

  20. Koller CM, Hollerweger R, Sabitzer C et al (2014) Thermal stability and oxidation resistance of arc evaporated TiAlN, TaAlN, TiAlTaN, and TiAlN/TaAlN coatings. Surf Coat Technol 259:599–607

    Article  CAS  Google Scholar 

  21. Rachbauer R, Blutmager A, Holec D, Mayrhofer PH (2012) Effect of Hf on structure and age hardening of Ti–Al-N thin films. Surf Coat Technol 206:2667–2672

    Article  CAS  Google Scholar 

  22. Braic V, Zoita CN, Balaceanu M et al (2010) TiAlN/TiAlZrN multilayered hard coatings for enhanced performance of HSS drilling tools. Surf Coat Technol 204:1925–1928

    Article  CAS  Google Scholar 

  23. Tillmann W, Momeni S, Hoffmann F (2013) A study of mechanical and tribological properties of self-lubricating TiAlVN coatings at elevated temperatures. Tribol Int 66:324–329

    Article  CAS  Google Scholar 

  24. Yang K, **an G, Zhao H et al (2015) Effect of Mo content on the structure and mechanical properties of TiAlMoN films deposited on WC–Co cemented carbide substrate by magnetron sputtering. Int J Refract Metals Hard Mater 52:29–35

    Article  CAS  Google Scholar 

  25. Wang M, Ma R, Du A et al (2020) Corrosion resistance of black phosphorus nanosheets composite phosphate coatings on Q235 steel. Mater Chem Phys 250:123056–123066. https://doi.org/10.1016/j.matchemphys.2020.123056

    Article  CAS  Google Scholar 

  26. Rofagha R, Erb U, Ostrander D et al (1993) The effects of grain size and phosphorus on the corrosion of nanocrystalline Ni-P alloys. Nanostruct Mater 2:1–10

    Article  CAS  Google Scholar 

  27. Lo P-H, Tsai W-T, Lee J-T, Hung M-P (1994) Role of phosphorus in the electrochemical behavior of electroless Ni-P alloys in 3.5 wt.% NaCl solutions. Surf Coat Technol 67:27–34

    Article  CAS  Google Scholar 

  28. Hashimoto K, Zhang BP, Im BM et al (1997) The role of phosphorus in enhancing corrosion resistance of amorphous alloys. Sci Rep Res Inst Tohoku Univ Ser A Japan 43:145–151

    CAS  Google Scholar 

  29. Makha M, Ghailane A, Larhlimi H et al (2020) Phosphorus containing coatings: technologies and applications. ChemistrySelect 5:6570–6584

    Article  CAS  Google Scholar 

  30. Królikowski A, Butkiewicz P (1993) Anodic behavior of Ni P alloys studied by impedance spectroscopy. Electrochim Acta 38:1979–1983

    Article  Google Scholar 

  31. Sribalaji M, Arunkumar P, Babu KS, Keshri AK (2015) Crystallization mechanism and corrosion property of electroless nickel phosphorus coating during intermediate temperature oxidation. Appl Surf Sci 355:112–120

    Article  CAS  Google Scholar 

  32. Millet F, Auvergne R, Caillol S et al (2014) Improvement of corrosion protection of steel by incorporation of a new phosphonated fatty acid in a phosphorus-containing polymer coating obtained by UV curing. Prog Org Coat 77:285–291

    Article  CAS  Google Scholar 

  33. Krupa D, Baszkiewicz J, Kozubowski JA et al (2002) Effect of phosphorus-ion implantation on the corrosion resistance and biocompatibility of titanium. Biomaterials 23:3329–3340

    Article  CAS  Google Scholar 

  34. Ramezani-Varzaneh HA, Allahkaram SR, Isakhani-Zakaria M (2014) Effects of phosphorus content on corrosion behavior of trivalent chromium coatings in 3.5 wt.% NaCl solution. Surf Coat Technol 244:158–165

    Article  CAS  Google Scholar 

  35. Guo L, Huang Q, Zhang C et al (2021) Study on the formation of Mn-P coatings with significant corrosion resistance on Q235 carbon steels by adjusting the ratio of phosphorus to manganese. Corros Sci 178:108960–108974

    Article  CAS  Google Scholar 

  36. Ghailane A, Makha M, Larhlimi H, Alami J (2020) Design of hard coatings deposited by HiPIMS and dcMS. Mater Lett 280:128540–128545

    Article  CAS  Google Scholar 

  37. Alami J, Eklund P, Andersson JM et al (2007) Phase tailoring of Ta thin films by highly ionized pulsed magnetron sputtering. Thin Solid Films 515:3434–3438

    Article  CAS  Google Scholar 

  38. Alami J, Stranak V, Herrendorf A-P et al (2015) Design of magnetic field configuration for controlled discharge properties in highly ionized plasma. Plasma Sources Sci Technol 24:045016–045026

    Article  Google Scholar 

  39. Ghailane A, Larhlimi H, Tamraoui Y et al (2020) The effect of magnetic field configuration on structural and mechanical properties of TiN coatings deposited by HiPIMS and dcMS. Surf Coat Technol 404:126572–126582

    Article  CAS  Google Scholar 

  40. Ratova M, West GT, Kelly PJ (2014) Optimisation of HiPIMS photocatalytic titania coatings for low temperature deposition. Surf Coat Technol 250:7–13

    Article  CAS  Google Scholar 

  41. Houska J, Kolenaty D, Vlcek J, Cerstvy R (2018) Properties of thermochromic VO2 films prepared by HiPIMS onto unbiased amorphous glass substrates at a low temperature of 300° C. Thin Solid Films 660:463–470

    Article  CAS  Google Scholar 

  42. Fager H, Tengstrand O, Lu J et al (2017) Low-temperature growth of dense and hard Ti0.41Al0.51Ta0.08N films via hybrid HIPIMS/DC magnetron co-sputtering with synchronized metal-ion irradiation. J Appl Phys 121:171902–171909

    Article  Google Scholar 

  43. Magnfält D, Abadias G, Sarakinos K (2013) Atom insertion into grain boundaries and stress generation in physically vapor deposited films. Appl Phys Lett 103:051910–051914

    Article  Google Scholar 

  44. Abegunde OO, Makha M, Machkih K et al (2022) Comparative study on the influence of reactive gas flow rate on the growth and Properties of P-doped TiAlN coatings prepared by DcMS and HiPIMS. J Bio Tribocorros 8:1–15. https://doi.org/10.1007/s40735-022-00672-2

    Article  Google Scholar 

  45. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583

    Article  CAS  Google Scholar 

  46. Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19:3–20

    Article  CAS  Google Scholar 

  47. Mitin DM, Serdobintsev AA (2017) Effect of scattering of sputtered atoms on the growth rate of films fabricated by magnetron sputtering. Tech Phys Lett 43:814–816

    Article  CAS  Google Scholar 

  48. Lundin D, Sarakinos K (2012) An introduction to thin film processing using high-power impulse magnetron sputtering. J Mater Res 27:780–792

    Article  CAS  Google Scholar 

  49. Uny F, Blanquet E, Schuster F, Sanchette F (2018) Ti-Al-N-based hard coatings: Thermodynamical background, CVD deposition, and properties. A review. In: Coatings and thin-film technologies

  50. Li X, Bakhit B, Joesaar MPJ et al (2021) Toward energy-efficient physical vapor deposition: routes for replacing substrate heating during magnetron sputter deposition by employing metal ion irradiation. Surf Coat Technol 415:127639–127640

    Article  Google Scholar 

  51. Ipaz L, Aperador W, Caicedo J et al (2012) A practical application of X-ray spectroscopy in Ti-Al-N and Cr-Al-N thin films. In: X-ray spectroscopy, pp 21–38

  52. Elmkhah H, Zhang TF, Abdollah-Zadeh A et al (2016) Surface characteristics for the TiAlN coatings deposited by high power impulse magnetron sputtering technique at the different bias voltages. J Alloys Compd 688:820–827

    Article  CAS  Google Scholar 

  53. Zhou H, Zheng J, Gui B et al (2017) AlTiCrN coatings deposited by hybrid HIPIMS/DC magnetron co-sputtering. Vacuum 136:129–136

    Article  CAS  Google Scholar 

  54. Wang Z, Zhang D, Ke P et al (2015) Influence of substrate negative bias on structure and properties of TiN coatings prepared by hybrid HIPIMS method. J Mater Sci Technol 31:37–42. https://doi.org/10.1016/j.jmst.2014.06.002

    Article  CAS  Google Scholar 

  55. Das S, Guha S, Ghadai R et al (2017) Structural and mechanical properties of CVD deposited titanium aluminium nitride (TiAlN) thin films. Appl Phys A 123:412

    Article  Google Scholar 

  56. Chen L, Wang SQ, Du Y et al (2010) Machining performance of Ti–Al–Si–N coated inserts. Surf Coat Technol 205:582–586

    Article  CAS  Google Scholar 

  57. Zhu S, **ao L, Cortie MB (2016) Surface enhanced Raman spectroscopy on metal nitride thin films. Vib Spectrosc 85:146–148

    Article  CAS  Google Scholar 

  58. Barshilia HC, Rajam KS (2005) A Raman-scattering study on the interface structure of nanolayered Ti Al N/Ti N and Ti N/Nb N multilayer thin films grown by reactive dc magnetron sputtering. J Appl Phys 98:014311–014320

    Article  Google Scholar 

  59. ** Y, Bai Y, Gao K et al (2018) Residual stress and microstructure effects on mechanical, tribological and electrical properties of TiN coatings on 304 stainless steel. Ceram Int 44:15851–15858

    Article  CAS  Google Scholar 

  60. Ali R, Sebastiani M, Bemporad E (2015) Influence of Ti–TiN multilayer PVD-coatings design on residual stresses and adhesion. Mater Des 75:47–56

    Article  CAS  Google Scholar 

  61. Sangiovanni DG, Chirita V, Hultman L (2012) Toughness enhancement in TiAlN-based quarternary alloys. Thin Solid Films 520:4080–4088

    Article  CAS  Google Scholar 

  62. Kataria S, Srivastava SK, Kumar P et al (2012) Nanocrystalline TiN coatings with improved toughness deposited by pulsing the nitrogen flow rate. Surf Coat Technol 206:4279–4286

    Article  CAS  Google Scholar 

  63. Leyland A, Matthews A (2000) On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour. Wear 246:1–11

    Article  CAS  Google Scholar 

  64. Zhang S, Sun D, Fu Y, Du H (2005) Toughness measurement of thin films: a critical review. Surf Coat Technol 198:74–84

    Article  CAS  Google Scholar 

  65. Cheng Y-T, Cheng C-M (1998) Relationships between hardness, elastic modulus, and the work of indentation. Appl Phys Lett 73:614–616

    Article  CAS  Google Scholar 

  66. Kumar S, Maity SR, Patnaik L (2020) Friction and tribological behavior of bare nitrided, TiAlN and AlCrN coated MDC-K hot work tool steel. Ceram Int 46:17280–17294. https://doi.org/10.1016/J.CERAMINT.2020.04.015

    Article  CAS  Google Scholar 

  67. Kumar S, Maity SR, Patnaik L (2022) Morphology and wear behavior of monolayer TiAlN and composite AlCrN/TiAlN-coated plasma-nitrided DAC-10 tool steel. Arab J Sci Eng. https://doi.org/10.1007/s13369-022-06711-x

    Article  Google Scholar 

  68. Sui X, Li G, Qin X et al (2016) Relationship of microstructure, mechanical properties and titanium cutting performance of TiAlN/TiAlSiN composite coated tool. Ceram Int 42:7524–7532

    Article  CAS  Google Scholar 

  69. Sveen S, Andersson JM, M’saoubi R, Olsson M (2013) Scratch adhesion characteristics of PVD TiAlN deposited on high speed steel, cemented carbide and PCBN substrates. Wear 308:133–141

    Article  CAS  Google Scholar 

  70. Simsir M, Palaci Y, Özer A (2021) A comparative study of hardness/scratch/wear properties of TiCN and TiAlN coatings on DIN 1.2842 steel by CA-PVD method. J Aust Ceram Soc 57:1–11

    Article  Google Scholar 

  71. Chen J (2012) Indentation-based methods to assess fracture toughness for thin coatings. J Phys D Appl Phys 45:203001–203015

    Article  Google Scholar 

  72. Chen J, Bull SJ (2010) Approaches to investigate delamination and interfacial toughness in coated systems: an overview. J Phys D Appl Phys 44:034001–034020

    Article  Google Scholar 

  73. Datta T, Pathak AD, Basak S et al (2021) Fractal behavior of surface oxide crack patterns on AISI 4140 high-strength low-alloy steel exposed to the simulated offshore environment. Appl Surf Sci Adv 5:100110–100118

    Article  Google Scholar 

  74. Kahyarian A, Schumaker A, Brown B, Nesic S (2017) Acidic corrosion of mild steel in the presence of acetic acid: mechanism and prediction. Electrochim Acta 258:639–652

    Article  CAS  Google Scholar 

  75. Zhao X, Cai W, Zhao L (2002) Corrosion behavior of phosphorus ion-implanted Ni50.6Ti49.4 shape memory alloy. Surf Coat Technol 155:236–238

    Article  CAS  Google Scholar 

  76. Ghailane A, Oluwatosin AO, Larhlimi H et al (2021) Titanium nitride, TiXN (1-X), coatings deposited by HiPIMS for corrosion resistance and wear protection properties. Appl Surf Sci 574:151635–151646

    Article  Google Scholar 

  77. Stansbury EE, Buchanan RA (2000) Fundamentals of electrochemical corrosion. ASM International, Almere

    Book  Google Scholar 

  78. Obeydavi A, Shafyei A, Rezaeian A et al (2020) Microstructure, mechanical properties and corrosion performance of Fe44Cr15Mo14Co7C10B5Si5 thin film metallic glass deposited by DC magnetron sputtering. J Non Cryst Solids 527:119718–119735

    Article  CAS  Google Scholar 

  79. Lu F, Song B, He P et al (2017) Electrochemical impedance spectroscopy (EIS) study on the degradation of acrylic polyurethane coatings. RSC Adv 7:13742–13748

    Article  CAS  Google Scholar 

  80. Ding Z, Li Y-Y, Xu M-R et al (2020) Electrochemical properties of aluminum tripolyphosphate modified chemically bonded phosphate ceramic anticorrosion coating. Constr Build Mater 251:118874–118884. https://doi.org/10.1016/j.conbuildmat.2020.118874

    Article  CAS  Google Scholar 

  81. NACE International (1999) Standard recommended practice: preparation, installation, analysis, and interpretation of corrosion coupons in oilfield operations. NACE International, Houston

    Google Scholar 

  82. Panjan P, Drnovšek A, Gselman P et al (2019) Influence of growth defects on the corrosion resistance of sputter-deposited TiAlN Hard coatings. Coatings. https://doi.org/10.3390/coatings9080511

    Article  Google Scholar 

  83. Jehn HA (2000) Improvement of the corrosion resistance of PVD hard coating–substrate systems. Surf Coat Technol 125:212–217. https://doi.org/10.1016/S0257-8972(99)00551-4

    Article  CAS  Google Scholar 

  84. Panjan P, Čekada M, Panjan M et al (2012) Surface density of growth defects in different PVD hard coatings prepared by sputtering. Vacuum 86:794–798. https://doi.org/10.1016/J.VACUUM.2011.07.013

    Article  CAS  Google Scholar 

  85. Wang X, Chen Y, Niu G (2018) The study on corrosion resistance of high-strength spring steel. Corros Eng Sci Technol 53:54–64

    Article  Google Scholar 

  86. Chen D, Yen M, Lin P et al (2014) A corrosion sensor for monitoring the early-stage environmental corrosion of A36 carbon steel. Materials 7:5746–5760

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial contribution of OCP.SA Morocco.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olayinka O. Abegunde.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abegunde, O.O., Makha, M., Machkih, K. et al. Structural, mechanical and corrosion resistance of phosphorus-doped TiAlN thin film. J Mater Sci 57, 19107–19130 (2022). https://doi.org/10.1007/s10853-022-07785-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07785-6

Navigation