Log in

Rethinking radiation effects in materials science using the plasma-focused ion beam

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This work demonstrates the viability of using a plasma-focused ion beam (PFIB) as a new platform to carry out radiation effects studies in solids. While materials subjected to irradiation in either nuclear reactors or energetic particle accelerators experience limitations with respect to inaccuracies in both flux measurements and lack of precise control of irradiation areas, we demonstrate a new irradiation technique that allows the exposure of a single specimen in multiple areas, at multiple doses, and in site-specific dependencies - all with flux variations on the order of only 1%. This versatile technique also allows materials to be exposed to significantly higher irradiation dose rates than conventional accelerators. To validate the new methodology, we selected the classical example of ion-beam-induced amorphization of pure single-crystal Si. By pioneering the use of the PFIB for radiation effects studies in materials science, we were able to exploit, in both micro- and nanometer-sized detail, the differences in electron image contrast arising from crystalline versus amorphous solid-state phases in classical semiconductors subjected to irradiation, thus providing new insights on amorphization mechanisms. This methodology opens new research frontiers at the fringe of materials science with promising applications beyond the scope of materials at extremes such as in nanopatterning, nanodevices and nanoarchitectonics.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

All the data necessary to interpret the results presented in this research are in the main manuscript. Further data are available upon request.

References

  1. Lewis SL (2016) The Paris agreement has solved a troubling problem. Nature 532(7599):283–283

    Article  CAS  Google Scholar 

  2. Cattant F, Crusset D, Féron D (2008) Corrosion issues in nuclear industry today. Mater Today 11(10):32–37

    Article  CAS  Google Scholar 

  3. Kittner N, Lill F, Kammen DM (2017) Energy storage deployment and innovation for the clean energy transition. Nat Energy 2(9):1–6

    Article  Google Scholar 

  4. Ongena J, Oost GV (2004) Energy for future centuries: will fusion be an inexhaustible, safe, and clean energy source? Fusion Sci Technol 45(2T):3–14

    Article  CAS  Google Scholar 

  5. Yvon P, Carré F (2009) Structural materials challenges for advanced reactor systems. J Nucl Mater 385(2):217–222

    Article  CAS  Google Scholar 

  6. Allen T, Busby J, Meyer M, Petti D (2010) Materials challenges for nuclear systems. Mater Today 13(12):14–23

    Article  CAS  Google Scholar 

  7. Cesario R, Amicucci L, Cardinali A, Castaldo C, Marinucci M, Panaccione L, Santini F, Tudisco O, Apicella M, Calabro G et al (2010) Current drive at plasma densities required for thermonuclear reactors. Nat Commun 1(1):1–10

    Article  CAS  Google Scholar 

  8. Zinkle SJ, Was G (2013) Materials challenges in nuclear energy. Acta Mater 61(3):735–758

    Article  CAS  Google Scholar 

  9. Zhang Y, Sachan R, Pakarinen OH, Chisholm MF, Liu P, Xue H, Weber WJ (2015) Ionization-induced annealing of pre-existing defects in silicon carbide. Nat Commun 6(1):1–7

    Google Scholar 

  10. Aguiar JA, Jokisaari AM, Kerr M, Allen Roach R (2020) Bringing nuclear materials discovery and qualification into the 21st century. Nat Commun 11(1):1–3

    Article  CAS  Google Scholar 

  11. English C, Eyre B, Jenkins M (1976) Heavy-ion damage in \(\alpha\)-Fe. Nature 263(5576):400–401

    Article  CAS  Google Scholar 

  12. Phaneuf M (2005) FIB for materials science applications-A review. Introduction to focused ion beams pp 143–172

  13. Phaneuf M, Li J, Casey J (2002) Gallium phase formation in Cu and other FCC metals during near-normal incidence Ga-FIB milling and techniques to avoid this phenomenon. Microsc Microanal 8(S02):52–53

    Article  Google Scholar 

  14. Bała P, Gajewska M, Cios G, Kawałko J, Wątroba M, Bednarczyk W, Dziurka R (2022) Effect of Ga\(^{+}\) ion beam on the stability of retained austenite in high carbon steel. Mater Charact 186:111766

    Article  CAS  Google Scholar 

  15. Giannuzzi LA, Stevie FA (1999) A review of focused ion beam milling techniques for TEM specimen preparation. Micron 30(3):197–204

    Article  Google Scholar 

  16. Pfeifenberger MJ, Mangang M, Wurster S, Reiser J, Hohenwarter A, Pfleging W, Kiener D, Pippan R (2017) The use of femtosecond laser ablation as a novel tool for rapid micro-mechanical sample preparation. Materials & Design 121:109–118

    Article  Google Scholar 

  17. Mayer J, Giannuzzi LA, Kamino T, Michael J (2007) TEM sample preparation and FIB-induced damage. MRS Bull 32(5):400–407

    Article  CAS  Google Scholar 

  18. Tweddle D, Johnson JA, Kapoor M, Mileski S, Carsley JE, Thompson GB (2022) Direct observation of pFIB-induced clustering in precipitation-strengthened Al alloys by atom probe tomography. Microscopy and Microanal 28(2):296–301

    Article  CAS  Google Scholar 

  19. Tunes MA, Schön CG, Greaves G (2019) Radiation-induced precipitation with concurrent bubbles formation in an austenitic stainless steel (AISI-348). Materialia 7:100408

    Article  CAS  Google Scholar 

  20. Tunes MA, Greaves G, Kremmer TM, Vishnyakov VM, Edmondson PD, Donnelly SE, Pogatscher S, Schön CG (2019) Thermodynamics of an austenitic stainless steel (AISI-348) under in situ TEM heavy ion irradiation. Acta Mater 179:360–371

    Article  CAS  Google Scholar 

  21. Tunes MA, Greaves G, Bei H, Edmondson PD, Zhang Y, Donnelly SE, Schön CG (2021) Comparative irradiation response of an austenitic stainless steel with its high-entropy alloy counterpart. Intermetallics 132:107130

    Article  CAS  Google Scholar 

  22. Williams J (1986) Materials modification with ion beams. Rep Prog Phys 49(5):491

    Article  CAS  Google Scholar 

  23. Morehead F, Crowder B, Title R (1972) Formation of amorphous silicon by ion bombardment as a function of ion, temperature, and dose. J Appl Phys 43(3):1112–1118

    Article  CAS  Google Scholar 

  24. Christel L, Gibbons J, Sigmon T (1981) Displacement criterion for Amorphization of silicon during ion implantation. J Appl Phys 52(12):7143–7146

    Article  CAS  Google Scholar 

  25. Battaglia A, Priolo F, Rimini E, Ferla G (1990) Ion-induced annealing and Amorphization of isolated damage clusters in Si. Appl Phys Lett 56(26):2622–2624

    Article  CAS  Google Scholar 

  26. Edmondson P, Riley D, Birtcher R, Donnelly S (2009) Amorphization of crystalline Si due to heavy and light ion irradiation. J Appl Phys 106(4):043505

    Article  CAS  Google Scholar 

  27. Edmondson PD, Abrams K, Hinks J, Greaves G, Pawley C, Hanif I, Donnelly S (2016) An in situ transmission electron microscopy study of the ion irradiation induced amorphisation of silicon by He and Xe. Scripta Mater 113:190–193

    Article  CAS  Google Scholar 

  28. Donnelly S, Birtcher R, Vishnyakov V, Carter G (2003) Annealing of isolated amorphous zones in silicon. Appl Phys Lett 82(12):1860–1862

    Article  CAS  Google Scholar 

  29. Roorda S, Sinke W, Poate J, Jacobson D, Dierker S, Dennis B, Eaglesham D, Spaepen F, Fuoss P (1991) Structural relaxation and defect annihilation in pure amorphous silicon. Phys Rev B 44(8):3702

    Article  CAS  Google Scholar 

  30. Zhu X, Williams J, McCallum J (1999) Structural changes in ultra-high-dose self-implanted crystalline and amorphous silicon. Nucl Instrum Methods Phys Res, Sect B 148(1–4):268–272

    Article  CAS  Google Scholar 

  31. Narayan J, Oen O, Fathy D, Holland O (1985) Atomic structure of collision cascades in ion-implanted silicon and channeling effects. Mater Lett 3(3):67–72

    Article  CAS  Google Scholar 

  32. Ruault M, Jäger W (1980) Transmission electron microscope investigations of defects produced by individual displacement cascades in Si and Ge. J Microsc 118(1):67–73

    Article  CAS  Google Scholar 

  33. Ruault M, Chaumont J, Bernas H (1983) Transmission electron microscopy study of ion implantation induced Si amorphization. Nucl Instrum Methods Phys Res 209:351–356

    Article  Google Scholar 

  34. Prussin S, Margolese DI, Tauber RN (1985) Formation of amorphous layers by ion implantation. J Appl Phys 57(2):180–185

    Article  CAS  Google Scholar 

  35. Jones K, Sadana D, Prussin S, Washburn J, Weber E, Hamilton W (1988) The formation of a continuous amorphous layer by room-temperature implantation of boron into silicon. J Appl Phys 63(5):1414–1418

    Article  CAS  Google Scholar 

  36. Tamura M (1991) Damage formation and annealing of ion implantation in Si. Mater Sci Reports 6(4–5):141–214

    Article  CAS  Google Scholar 

  37. Pelaz L, Marqués LA, Aboy M, Barbolla J, Gilmer GH (2003) Atomistic modeling of amorphization and recrystallization in silicon. Appl Phys Lett 82(13):2038–2040

    Article  CAS  Google Scholar 

  38. Pelaz L, Marqués LA, Barbolla J (2004) Ion-beam-induced amorphization and recrystallization in silicon. J Appl Phys 96(11):5947–5976

    Article  CAS  Google Scholar 

  39. Holland O, Narayan J (1984) Mechanism for dynamic annealing during high flux ion irradiation in Si. Appl Phys Lett 44(8):758–760

    Article  CAS  Google Scholar 

  40. Holland O, Fathy D, Narayan J, Oen O (1985) Dose rate dependence of damage clustering during heavy ion irradiation in Si. Radiat Eff 90(1–2):127–139

    Article  CAS  Google Scholar 

  41. Holland O, Narayan J, Fathy D (1985) Ion beam processes in Si. Nucl Instrum Methods Phys Res, Sect B 7:243–250

    Article  Google Scholar 

  42. Holland O, Pennycook S, Albert GL (1989) New model for damage accumulation in Si during self-ion irradiation. Appl Phys Lett 55(24):2503–2505

    Article  CAS  Google Scholar 

  43. Chason E, Picraux S, Poate J, Borland J, Current M, Diaz de La Rubia T, Eaglesham D, Holland O, Law M, Magee C et al (1997) Ion beams in silicon processing and characterization. J Appl Phys 81(10):6513–6561

    Article  CAS  Google Scholar 

  44. **e R, Long G, Weigand S, Moss S, Roorda S (2011) Order and disorder in edge-supported pure amorphous Si and pure amorphous Si on Si (001). J Non-Cryst Solids 357(14):2498–2501

    Article  CAS  Google Scholar 

  45. Volkert C (1993) Density changes and viscous flow during structural relaxation of amorphous silicon. J Appl Phys 74(12):7107–7113

    Article  CAS  Google Scholar 

  46. Leong D, Harry M, Reeson K, Homewood K (1997) A silicon/iron-disilicide light-emitting diode operating at a wavelength of 1.5 \(\mu\)m. Nature 387(6634):686–688

    Article  CAS  Google Scholar 

  47. Prati E, Hori M, Guagliardo F, Ferrari G, Shinada T (2012) Anderson-Mott transition in arrays of a few dopant atoms in a silicon transistor. Nat Nanotechnol 7(7):443–447

    Article  CAS  Google Scholar 

  48. Williamson D, Roorda S, Chicoine M, Tabti R, Stolk P, Acco S, Saris F (1995) On the nanostructure of pure amorphous silicon. Appl Phys Lett 67(2):226–228

    Article  CAS  Google Scholar 

  49. Gibbons JF (1972) Ion implantation in semiconductors-part ii: Damage production and annealing. Proc IEEE 60(9):1062–1096

    Article  CAS  Google Scholar 

  50. Holmes-Siedle A, Adams L (1993) Handbook of radiation effects. Oxford Univ. Press Inc, New York, NY (United States)

    Google Scholar 

  51. Brinkman JA (1954) On the nature of radiation damage in metals. J Appl Phys 25(8):961–970

    Article  CAS  Google Scholar 

  52. de la Rubia TD (1996) Defect production mechanisms in metals and covalent semiconductors. Nucl Instrum Methods Phys Res, Sect B 120(1–4):19–26

    Article  Google Scholar 

  53. Howe L, Rainville M (1981) Features of collision cascades in silicon as determined by transmission electron microscopy. Nucl Inst Methods 182:143–151

    Article  Google Scholar 

  54. Howe L, Rainville M (1987) Heavy ion damage in silicon and germanium. Nucl Instrum Methods Phys Res, Sect B 19:61–66

    Article  Google Scholar 

  55. Weber W (2000) Models and mechanisms of irradiation-induced amorphization in ceramics. Nucl Instrum Methods Phys Res, Sect B 166:98–106

    Article  Google Scholar 

  56. Camara O, Tunes MA, Greaves G, Mir AH, Donnelly S, Hinks JA (2019) Understanding amorphization mechanisms using ion irradiation in situ a TEM and 3d damage reconstruction. Ultramicroscopy 207:112838

    Article  CAS  Google Scholar 

  57. Aronova M, Kim Y, Zhang G, Leapman R (2007) Quantification and thickness correction of EFTEM phosphorus maps. Ultramicroscopy 107(2–3):232–244

    Article  CAS  Google Scholar 

  58. Egerton RF (2008) Electron energy-loss spectroscopy in the TEM. Rep Prog Phys 72(1):016502

    Article  CAS  Google Scholar 

  59. Ziegler JF, Ziegler MD, Biersack JP (2010) SRIM-The stop** and range of ions in matter (2010). Nucl Instrum Methods Phys Res, Sect B 268(11–12):1818–1823

    Article  CAS  Google Scholar 

  60. Stoller RE, Toloczko MB, Was GS, Certain AG, Dwaraknath S, Garner FA (2013) On the use of SRIM for computing radiation damage exposure. Nucl Instrum Methods Phys Res, Sect B 310:75–80

    Article  CAS  Google Scholar 

  61. Holmstrom E, Kuronen A, Nordlund K (2008) Threshold defect production in silicon determined by density functional theory molecular dynamics simulations. Phys Rev B 78(4):045202

    Article  CAS  Google Scholar 

  62. Lefèvre J, Costantini J-M, Esnouf S, Petite G (2009) Silicon threshold displacement energy determined by photoluminescence in electron-irradiated cubic silicon carbide. J Appl Phys 105(2):023520

    Article  CAS  Google Scholar 

  63. Weber W, Wang L, Yu N, Hess N (1998) Structure and properties of ion-beam-modified (6H) silicon carbide. Mater Sci Eng, A 253(1–2):62–70

    Article  Google Scholar 

  64. Ostrouchov C, Zhang Y, Weber J et al (2018) pySRIM: automation, analysis, and plotting of SRIM calculations. J Open Source Softw 3(28):829

    Article  Google Scholar 

  65. Jácome LA, Eggeler G, Dlouhỳ A (2012) Advanced scanning transmission stereo electron microscopy of structural and functional engineering materials. Ultramicroscopy 122:48–59

    Article  CAS  Google Scholar 

  66. Zhang Y, Xue H, Zarkadoula E, Sachan R, Ostrouchov C, Liu P, Wang X-L, Zhang S, Wang TS, Weber WJ (2017) Coupled electronic and atomic effects on defect evolution in silicon carbide under ion irradiation. Curr Opin Solid State Mater Sci 21(6):285–298

    Article  CAS  Google Scholar 

  67. Stuchbery AE, Bezakova E (1999) Thermal-spike lifetime from picosecond-duration preequilibrium effects in hyperfine magnetic fields following ion implantation. Phys Rev Lett 82(18):3637

    Article  CAS  Google Scholar 

  68. Couet A (2022) Integrated high-throughput research in extreme environments targeted toward nuclear structural materials discovery. J Nucl Mater 559:153425

    Article  CAS  Google Scholar 

  69. Ariga K, Ji Q, Nakanishi W, Hill JP, Aono M (2015) Nanoarchitectonics: a new materials horizon for nanotechnology. Mater Horiz 2(4):406–413

    Article  CAS  Google Scholar 

  70. Foerster M, Menéndez E, Coy E, Quintana A, Gómez-Olivella C, de los Ojos DE, Vallcorba O, Frontera C, Aballe L, Nogués J et al (2020) Local manipulation of metamagnetism by strain nanopatterning. Mater Horiz 7(8):2056–2062

    Article  CAS  Google Scholar 

  71. Xu W, Lee T-W (2016) Recent progress in fabrication techniques of graphene nanoribbons. Mater Horiz 3(3):186–207

    Article  CAS  Google Scholar 

  72. Ovshinsky SR, Madan A (1978) A new amorphous silicon-based alloy for electronic applications. Nature 276(5687):482–484

    Article  CAS  Google Scholar 

  73. Boyd IW, Wilson JI (1983) Laser processing of silicon. Nature 303(5917):481–486

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Los Alamos National Laboratory (LANL) - managed by Triad National Security LCC for the United States Department of Energy’s (U.S. DOE) National Nuclear Security Administration (NNSA) - provided research support to MAT via the Laboratory Directed Research and Development program under project number 20200689PRD2. This work has been carried out at the Electron Microscopy Laboratory at LANL. MAT is particularly grateful to all staff members of the Hydride and Fuels Research Laboratories at LANL for receiving him as a co-worker with patience and kindness. MAT would like to thank Professor Sjoerd Roorda (University of Montreal) for assistance with previous literature review on amorphization of Si under ion irradiation and implantation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Tunes.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Handling Editor: N. Ravishankar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 264 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tunes, M.A., Schneider, M.M., Taylor, C.A. et al. Rethinking radiation effects in materials science using the plasma-focused ion beam. J Mater Sci 57, 16795–16808 (2022). https://doi.org/10.1007/s10853-022-07667-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07667-x

Navigation