Log in

A new family of high temperature stability and ultra-fast charge–discharge KNN-based lead-free ceramics

  • Materials for Energy Storage
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Dielectric ceramic capacitors have been widely used in pulse-power technology because of their good performance of high power density and fast discharge speed. A series of lead-free relaxor ceramics (1-x)K0.5Na0.5NbO3-xLa(Mn0.5Ni0.5)O3 (KNN-xLMN) featuring with considerable charge–discharge behavior and energy storage properties were designed and prepared in this work. The grain size of ceramics decreases to 180 ± 20 nm, and the dispersion coefficient is > 1.6, both of which are beneficial to obtain slender P-E loops and improve the energy storage performance in K0.5Na0.5NbO3 ceramics upon La(Mn0.5Ni0.5)O3 do**. Consequently, acceptable dielectric properties (maximum permittivity εr of 1693, Δε/ε100 °C ≤  ± 15% from 33 °C to 309 °C, minimum dielectric loss tan δ of 0.028, 50 kHz) and a high recoverable energy storage density (Wrec ~ 1.65 J/cm3) accompanied by high energy storage efficiency (η ~ 76%) were obtained simultaneously in 0.97KNN-0.03LMN ceramics. Meanwhile, 0.97KNN-0.03LMN composition exhibited satisfactory charge–discharge performance (PD ~ 155 MW/cm3, t0.9 ~ 55 ns) and temperature stability (30 ~ 110 °C). This work not only proposes an efficient strategy to realize high energy storage and ultra-fast charge–discharge performance in lead-free KNN based ceramics, but also provide an candidate material for application of advanced pulsed power capacitors.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Guney MS, Tepe Y (2017) Classification and assessment of energy storage systems. Renew Sust Enerf Rev 75:1187–1197

    Article  Google Scholar 

  2. Lu Z, Wang G, Bao W et al (2020) Superior energy density through tailored dopant strategies in multilayer ceramic capacitors. Energy Environ Sci 13:2938–2948

    Article  CAS  Google Scholar 

  3. Wang X, Huan Y, Zhao P et al (2021) Optimizing the grain size and grain boundary morphology of (K, Na)NbO3-based ceramics: paving the way for ultrahigh energy storage capacitors. J Materiomics 7:780–789

    Article  Google Scholar 

  4. Li Q, Han K, Gadinski MR et al (2014) High energy and power density capacitors from solution-processed ternary ferroelectric polymer nanocomposites. Adv Mater 26(36):6244–6249

    Article  CAS  Google Scholar 

  5. Zhang L, Pu Y, Chen M et al (2020) Novel Na0.5Bi0.5TiO3 based, lead-free energy storage ceramics with high power and energy density and excellent high-temperature stability. Chem Eng J 383:123154

    Article  CAS  Google Scholar 

  6. Zhou M, Liang R, Zhou Z et al (2018) Novel sodium niobate-based lead-free ceramics as new environment-friendly energy storage materials with high energy density, high power density, and excellent stability. ACS Sustain Chem Eng 6(10):12755–12765

    Article  CAS  Google Scholar 

  7. Shi J, Chen X, Sun C et al (2020) Superior thermal and frequency stability and decent fatigue endurance of high energy storage properties in NaNbO3-based lead-free ceramics. Ceram Int 45(16):25731–25737

    Article  CAS  Google Scholar 

  8. Muhammad R, Iqbal Y, Reaney IM et al (2016) BaTiO3-Bi(Mg2/3Nb1/3)O3 Ceramics for High-Temperature Capacitor Applications. J Am Ceram Soc 99(6):2089–2095

    Article  CAS  Google Scholar 

  9. Chen L, Wang H, Zhao P et al (2019) Multifunctional BaTiO3-(Bi0.5Na0.5)TiO3-based MLCC with high-energy storage properties and temperature stability. J Am Ceram Soc 102(7):4178–4187

    Article  CAS  Google Scholar 

  10. Jia W, Hou Y, Zheng M et al (2018) Superior temperature-stable dielectrics for MLCCs based on Bi0.5Na0.5TiO3-NaNbO3 system modified by CaZrO3. J Am Ceram Soc 101(8):3468–3479

    Article  CAS  Google Scholar 

  11. Cheng H, Ouyang J, Zhang YX et al (2017) Demonstration of ultra-high recyclable energy densities in domain-engineered ferroelectric films. Nat Commun 8(1):1999

    Article  CAS  Google Scholar 

  12. Pan H, Li F, Liu Y et al (2019) Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design. Science 365(6453):578–582

    Article  CAS  Google Scholar 

  13. Zhang H, Wei T, Zhang Q et al (2020) A review on the development of lead-free ferroelectric energy-storage ceramics and multilayer capacitors. J Mater Chem C 8(47):16648–16667

    Article  CAS  Google Scholar 

  14. Yang L, Kong X, Li F et al (2019) Perovskite lead-free dielectrics for energy storage applications. Prog Mater Sci 102:72–108

    Article  CAS  Google Scholar 

  15. Liu Z, Lu T, Ye J et al (2018) Antiferroelectrics for energy storage applications: a review. Adv Mater Technol 3(9):1800111

    Article  CAS  Google Scholar 

  16. Yang D, Gao J, Shu L et al (2020) Lead-free antiferroelectric niobates AgNbO3 and NaNbO3 for energy storage applications. J Mater Chem A 8(45):23724–23737

    Article  CAS  Google Scholar 

  17. Huan Y, Wei T, Wang X et al (2021) Achieving ultrahigh energy storage efficiency in local-composition gradient-structured ferroelectric ceramics. Chem Eng J 425:129506

    Article  CAS  Google Scholar 

  18. Xu Y, Guo Y, Liu Q et al (2020) Enhanced energy density in Mn-doped (1–x)AgNbO3-xCaTiO3 lead-free antiferroelectric ceramics. J Alloys Compd 821:153260

    Article  CAS  Google Scholar 

  19. Ren P, Ren D, Sun L et al (2020) Grain size tailoring and enhanced energy storage properties of two-step sintered Nd3+-doped AgNbO3. J Eur Ceram Soc 40(13):4495–4502

    Article  CAS  Google Scholar 

  20. Zhou M, Liang R, Zhou Z et al (2019) Combining high energy efficiency and fast charge-discharge capability in novel BaTiO3-based relaxor ferroelectric ceramic for energy-storage. Ceram Int 45(3):3582–3590

    Article  CAS  Google Scholar 

  21. Li F, Zhou M, Zhai J et al (2018) Novel barium titanate based ferroelectric relaxor ceramics with superior charge-discharge performance. J Eur Ceram Soc 38(14):4646–4652

    Article  CAS  Google Scholar 

  22. Zhu L, Lei X, Zhao L et al (2019) Phase structure and energy storage performance for BiFeO3-BaTiO3 based lead-free ferroelectric ceramics. Ceram Int 45(16):20266–20275

    Article  CAS  Google Scholar 

  23. Chen Z, Bu X, Ruan B et al (2020) Simultaneously achieving high energy storage density and efficiency under low electric field in BiFeO3-based lead-free relaxor ferroelectric ceramics. J Eur Ceram Soc 40(15):5450–5457

    Article  CAS  Google Scholar 

  24. Huan Y, Wei T, Wang Z et al (2020) Ultrahigh energy harvesting properties in Ag decorated potassium-sodium niobite particle-polymer composite. J Materiomics 6:355–363

    Article  Google Scholar 

  25. Chai Q, Yang D, Zhao X et al (2018) Lead-free (K, Na)NbO3-based ceramics with high optical transparency and large energy storage ability. J Am Ceram Soc 101(6):2321–2329

    Article  CAS  Google Scholar 

  26. Zhang M, Yang H, Li D et al (2020) Excellent energy density and power density achieved in K0.5Na0.5NbO3- based ceramics with high optical transparency. J Alloys Compd 829:154565

    Article  CAS  Google Scholar 

  27. Liu L-N, Chen X-M, Lian H-L et al (2020) Temperature-stable dielectric and energy storage properties of (0.94Bi0.47Na0.47Ba0.06TiO3-0.06BiAlO3)-NaNbO3 ceramics. J Alloys Compd 847:156409

    Article  CAS  Google Scholar 

  28. Ji H, Wang D, Bao W et al (2021) Ultrahigh energy density in short-range tilted NBT-based lead-free multilayer ceramic capacitors by nanodomain percolation. Energy Storage Mater 38:113–120

    Article  Google Scholar 

  29. Chen X, Sun J, Li X et al (2019) Phase evolution, microstructure, thermal stability of (K0.45Na0.45Li0.04La0.02)NbO3-Bi(Ni0.5Zr0.5)O3 ceramics. J Mater Sci-Mater Electron 30(17):16407–16414

    Article  CAS  Google Scholar 

  30. Ren X, Peng Z, Chen B et al (2020) A compromise between piezoelectricity and transparency in KNN-based ceramics: The dual functions of Li2O addition. J Eur Ceram Soc 40(6):2331–2337

    Article  CAS  Google Scholar 

  31. Chen X, Yan X, Li X et al (2018) Excellent temperature stability on relative permittivity, and conductivity behavior of K0.5Na0.5NbO3 based lead free ceramics. J Alloys Compd 762:697–705

    Article  CAS  Google Scholar 

  32. Chen B, Liang P, Wu D et al (2019) High-efficiency synthesis of high-performance K0.5Na0.5NbO3 ceramics. Powder Technol 346:248–255

    Article  CAS  Google Scholar 

  33. Shao T, Du H, Ma H et al (2017) Potassium–sodium niobate based lead-free ceramics: novel electrical energy storage materials. J Mater Chem A 5(2):554–563

    Article  CAS  Google Scholar 

  34. Chen B, Tian Y, Lu J et al (2020) Ultrahigh storage density achieved with (1–x)KNN-xBZN ceramics. J Eur Ceram Soc 40(8):2936–2944

    Article  CAS  Google Scholar 

  35. Yang Z, Gao F, Du H et al (2019) Grain size engineered lead-free ceramics with both large energy storage density and ultrahigh mechanical properties. Nano Energy 58:768–777

    Article  CAS  Google Scholar 

  36. Qiao X, Zhang F, Wu D et al (2020) Superior comprehensive energy storage properties in Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chem Eng J 388:124158

    Article  CAS  Google Scholar 

  37. Qu B, Du H, Yang Z et al (2017) Large recoverable energy storage density and low sintering temperature in potassium-sodium niobate-based ceramics for multilayer pulsed power capacitors. J Am Ceram Soc 100(4):1517–1526

    Article  CAS  Google Scholar 

  38. Yang H, Yan F, Lin Y et al (2017) Novel strontium titanate-based lead-free ceramics for high-energy storage applications. ACS Sustain Chem Eng 5(11):10215–10222

    Article  CAS  Google Scholar 

  39. Chao X, Ren X, Zhang X et al (2019) Excellent optical transparency of potassium-sodium niobate-based lead-free relaxor ceramics induced by fine grains. J Eur Ceram Soc 39(13):3684–3692

    Article  CAS  Google Scholar 

  40. Wu J, Mahajan A, Riekehr L et al (2018) Perovskite Srx(Bi1-xNa0.97-xLi0.03)0.5TiO3 ceramics with polar nano regions for high power energy storage. Nano Energy 50:723–732

    Article  CAS  Google Scholar 

  41. Liu S, Zhai J (2015) Improving the dielectric constant and energy density of poly(vinylidene fluoride) composites induced by surface-modified SrTiO3 nanofibers by polyvinylpyrrolidone. J Mater Chem A 3(4):1511–1517

    Article  CAS  Google Scholar 

  42. Shi R, Pu Y, Wang W et al (2020) A novel lead-free NaNbO3-Bi(Zn0.5Ti0.5)O3 ceramics system for energy storage application with excellent stability. J Alloys Compd 815:152356

    Article  CAS  Google Scholar 

  43. Zhao P, Tang B, Fang Z et al (2021) Improved dielectric breakdown strength and energy storage properties in Er2O3 modified Sr0.35Bi0.35K0.25TiO3. Chem Eng J 403:126290

    Article  CAS  Google Scholar 

  44. Zhang F, Qiao X, Shi Q et al (2021) High energy storage density realized in Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics at ultralow sintering temperature. J Eur Ceram Soc 41(1):368–375

    Article  CAS  Google Scholar 

  45. Li F, Hou X, Wang J et al (2019) Structure-design strategy of 0–3 type (Bi0.32Sr0.42Na0.20)TiO3/MgO composite to boost energy storage density, efficiency and charge-discharge performance. J Eur Ceram Soc 39(9):2889–2898

    Article  CAS  Google Scholar 

  46. Lai D, Yao Z, You W et al (2020) Modulating the energy storage performance of NaNbO3-based lead-free ceramics for pulsed power capacitors. Ceram Int 46(9):13511–13516

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (NSFC) (Grant No. 51872177). The authors would also like to thank the Natural Science Basic Research Plan in the Shaanxi Province of China (Grant No. 2022JQ-338, 2021ZDLSF06-03, 2021JM-201), Science and Technology Project of **’an, China (Grant No. 2020KJRC0014) and the Fundamental Research Funds for the Central Universities (Program No. GK202002014).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by ZP, QS, and FZ. The first draft of the manuscript was written by ZP and QS, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zhanhui Peng, Zupei Yang or **aolian Chao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this study.

Additional information

Handling Editor: M. Grant Norton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Z., Shi, Q., Zhang, F. et al. A new family of high temperature stability and ultra-fast charge–discharge KNN-based lead-free ceramics. J Mater Sci 57, 9992–10002 (2022). https://doi.org/10.1007/s10853-022-07265-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07265-x

Navigation