Log in

Chitosan-derived N-doped porous carbon with enhanced nitrogen concentration and tailored nitrogen configuration

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Chitosan has become an effective candidate as precursor for nitrogen-doped porous carbon with high specific surface area and desirable electrochemical performance. However, the effect of do** concentration and configuration of nitrogen on electrochemical properties is far from understanding. Here, nitrogen-doped porous carbons (NPCs) with enhanced nitrogen concentration and different nitrogen configurations were synthesized via hydrothermal carbonization and ZnCl2 activation process. When the urea/chitosan ratio varied from 0 to 7.5, NPCs with similar porous texture were obtained, which makes it possible to discuss the influence of nitrogen configurations on their electrochemical performances. The specific surface area of NPC7.5 reached 1465.6 m2/g, and the NPCs show hierarchically porous structure composed of micropores and mesopores. With the urea/chitosan ratio increased from 0 to 7.5, the total ratio of pyridonic N and pyridinic N increased (from 67.9 to 79.7%) and the ratio of quaternary N decreased significantly (from 19.8 to 6.0%). Pyridonic N and pyridinic N are more active for the conductivity of porous carbon during electrochemical reaction, which in turn induced the enhancement of electrochemical performances. The specific capacitance of NPC7.5 reached 303.2 F/g at current density of 1 A/g with solution resistance of only 0.49 Ω and charge transfer resistance of only 0.17 Ω.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Gao Y, Zheng S, Fu H et al (2020) Three-dimensional nitrogen doped hierarchically porous carbon aerogels with ultrahigh specific surface area for high-performance supercapacitors and flexible micro-supercapacitors. Carbon 168:701. https://doi.org/10.1016/j.carbon.2020.06.063

    Article  CAS  Google Scholar 

  2. Gong Y, Li D, Fu Q, Zhang Y et al (2020) Nitrogen self-doped porous carbon for high-performance supercapacitors. ACS Appl Energy Mater 3(2):1585. https://doi.org/10.1021/acsaem.9b02077

    Article  CAS  Google Scholar 

  3. Hao P, Zhao Z, Leng Y et al (2015) Graphene-based nitrogen self-doped hierarchical porous carbon aerogels derived from chitosan for high performancesupercapacitors. Nano Energy 15:9. https://doi.org/10.1016/j.nanoen.2015.02.035

    Article  CAS  Google Scholar 

  4. Wu Q, Hu J, Cao S, Yu S et al (2020) Heteroatom-doped hierarchical porous carbon aerogels from chitosan for high performancesupercapacitors. Int J Biol Macromol 155:131. https://doi.org/10.1016/j.ijbiomac.2020.03.202

    Article  CAS  Google Scholar 

  5. Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157(1):11. https://doi.org/10.1016/j.jpowsour.2006.02.065

    Article  CAS  Google Scholar 

  6. Balathanigaimani MS, Shim W-G, Lee M-J et al (2008) Highly porous electrodes from novel corn grains-based activated carbons for electrical double layer capacitors. Electrochem Commun 10(6):868. https://doi.org/10.1016/j.elecom.2008.04.003

    Article  CAS  Google Scholar 

  7. Ghosh A, Lee YH (2012) Carbon-based electrochemical capacitors. Chem Sus Chem 5(3):480. https://doi.org/10.1002/cssc.201100645

    Article  CAS  Google Scholar 

  8. Wang Y, Qiao M, Mamat X (2021) Nitrogen-doped macro-meso-micro hierarchical ordered porous carbon derived from ZIF-8 for boosting supercapacitor performance. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2020.148352

    Article  Google Scholar 

  9. Ghosh S, Barg S, Jeong SM, Ostrikov K (2020) Heteroatom-doped and oxygen-functionalized nanocarbons for high-performance supercapacitors. Adv Energy Mater. https://doi.org/10.1002/aenm.202001239

    Article  Google Scholar 

  10. Fleischmann S, Mitchell JB, Wang R et al (2020) Pseudocapacitance: from fundamental understanding to high power energy storage materials. Chem Rev 120(14):6738. https://doi.org/10.1021/acs.chemrev.0c00170

    Article  CAS  Google Scholar 

  11. Yang XQ, Wu DC, Chen XM et al (2010) Nitrogen-enriched nanocarbons with a 3-D continuous mesopore structure from polyacrylonitrile for supercapacitor application. J Phys Chem C 114(18):8581

    Article  CAS  Google Scholar 

  12. Yuksel R, Buyukcakir O, Panda PK et al (2020) Necklace-like nitrogen-doped tubular carbon 3D frameworks for electrochemical energy storage. Adv Funct Mater 30(10):1909725

    Article  CAS  Google Scholar 

  13. Song P, Shen XP, He XM et al (2019) Cellulose-derived nitrogen-doped hierarchically porous carbon for high-performance supercapacitors. Cellulose 26(2):1195

    Article  CAS  Google Scholar 

  14. Li J, Li X, **ong D et al (2019) Enhanced capacitance of boron-doped graphene aerogels for aqueous symmetric supercapacitors. Appl Surf Sci 475:285. https://doi.org/10.1016/j.apsusc.2018.12.152

    Article  CAS  Google Scholar 

  15. Zhao Z, **e Y (2018) Electrochemical supercapacitor performance of boron and nitrogen co-doped porous carbon nanowires. J Power Sources 400:264. https://doi.org/10.1016/j.jpowsour.2018.08.032

    Article  CAS  Google Scholar 

  16. Liu W, Tang YK, Sun ZP et al (2017) A simple approach of constructing sulfur-containing porous carbon nanotubes for high-performance supercapacitors. Carbon 115:754

    Article  CAS  Google Scholar 

  17. Yu X, Park SK, Yeon SH et al (2015) Three-dimensional, sulfur-incorporated graphene aerogels for the enhanced performances of pseudocapacitive electrodes. J Power Sources 283:328

    Article  CAS  Google Scholar 

  18. Raj FRMS, Boopathi G, Nv J et al (2020) N, S codoped activated mesoporous carbon derived from the Datura metel seed pod as active electrodes for supercapacitors. Diam Relat Mater 102:107687

    Article  CAS  Google Scholar 

  19. Li F, Ahmad A, **e LJ et al (2019) Phosphorus-modified porous carbon aerogel microspheres as high volumetric energy density electrode for supercapacitor. Electrochim Acta 318:151

    Article  CAS  Google Scholar 

  20. Ma WP, ** on surface chemistry and capacitive behaviors of porous carbon electrode. Electrochimi Acta 266:420

    Article  CAS  Google Scholar 

  21. An HR, Li Y, Long P et al (2016) Hydrothermal preparation of fluorinated graphene hydrogel for high-performance supercapacitors. J Power Sources 312:146

    Article  CAS  Google Scholar 

  22. Na W, Jun J, Park JW et al (2017) Highly porous carbon nanofibers co-doped with fluorine and nitrogen for outstanding supercapacitor performance. J Mater Chem A 5(33):17379

    Article  CAS  Google Scholar 

  23. Zhou HH, Peng YT, Wu HB et al (2016) Fluorine-rich nanoporous carbon with enhanced surface affinity in organic electrolyte for high-performance supercapacitors. Nano Energy 21:80

    Article  CAS  Google Scholar 

  24. Guo L, Yoon WY, Kim BK (2012) Fabrication and characterization of a silicon-carbon nanocomposite material by pyrolysis for lithium secondary batteries. Electron Mater Lett 8(4):405

    Article  CAS  Google Scholar 

  25. Wang ZG, Chen YF, Li PJ et al (2016) Synthesis of silicon-doped reduced graphene oxide and its applications in dye-sensitive solar cells and supercapacitors. RSC Adv 6(18):15080

    Article  CAS  Google Scholar 

  26. Kakaei K, Hamidi M, Husseindoost S (2016) Chlorine-doped reduced graphene oxide nanosheets as an efficient and stable electrode for supercapacitor in acidic medium. J Colloid Interf Sci 479:121

    Article  CAS  Google Scholar 

  27. Pinkert K, Oschatz M, Borchardt L et al (2014) Role of surface functional groups in ordered mesoporous carbide-derived carbon/ionic liquid electrolyte double-layer capacitor interfaces. Acs Appl Mater Inter 6(4):2922

    Article  CAS  Google Scholar 

  28. Jiang LL, Sheng LZ, Long CL et al (2015) Functional pillared graphene frameworks for ultrahigh volumetric performance supercapacitors. Adv Energy Mater 5(15):1500771

    Article  Google Scholar 

  29. Okajima K, Ohta K, Sudoh M (2005) Capacitance behavior of activated carbon fibers with oxygen-plasma treatment. Electrochim Acta 50(11):2227

    Article  CAS  Google Scholar 

  30. Li L, Zhong Q, Kim ND et al (2016) Nitrogen-doped carbonized cotton for highly flexible supercapacitors. Carbon 105:260. https://doi.org/10.1016/j.carbon.2016.04.031

    Article  CAS  Google Scholar 

  31. Hammi N, Chen S, Dumeignil F et al (2020) Chitosan as a sustainable precursor for nitrogen-containing carbon nanomaterials: synthesis and uses. Mater Today Sus. https://doi.org/10.1016/j.mtsust.2020.100053

    Article  Google Scholar 

  32. Chen W, Luo M, Liu C et al (2019) Fast microwave self-activation from chitosan hydrogel bead to hierarchical and O, N co-doped porous carbon at an air-free atmosphere for high-rate electrodes material. Carbohydr Polym 219:229. https://doi.org/10.1016/j.carbpol.2019.05.033

    Article  CAS  Google Scholar 

  33. Lota K, Acznik I, Sierczynska A et al (2016) The capacitance properties of activated carbon obtained from chitosan as the electrode material for electrochemical capacitors. Mater Lett 173:72. https://doi.org/10.1016/j.matlet.2016.03.031

    Article  CAS  Google Scholar 

  34. Śliwak A, Díez N, Miniach E et al (2016) Nitrogen-containing chitosan-based carbon as an electrode material for high-performance supercapacitors. J Appl Electrochem 46(6):667. https://doi.org/10.1007/s10800-016-0955-z

    Article  CAS  Google Scholar 

  35. Zhu L, Shen F, Smith RL et al (2017) High-performance supercapacitor electrode materials from chitosan via hydrothermal carbonization and potassium hydroxide activation. Energy Technol 5(3):452. https://doi.org/10.1002/ente.201600337

    Article  CAS  Google Scholar 

  36. Zhao X, Wang S, Wu Q (2017) Nitrogen and phosphorus dual-doped hierarchical porous carbon with excellent supercapacitance performance. Electrochim Acta 247:1140. https://doi.org/10.1016/j.electacta.2017.07.077

    Article  CAS  Google Scholar 

  37. Zhou J, Wang H, Yang W et al (2018) Sustainable nitrogen-rich hierarchical porous carbon nest for supercapacitor application. Carbohydr Polym 198:364. https://doi.org/10.1016/j.carbpol.2018.06.095

    Article  CAS  Google Scholar 

  38. Li B, Cheng Y, Dong L et al (2017) Nitrogen doped and hierarchically porous carbons derived from chitosan hydrogel via rapid microwave carbonization for high-performance supercapacitors. Carbon 122:592. https://doi.org/10.1016/j.carbon.2017.07.009

    Article  CAS  Google Scholar 

  39. Zhan C, Zhang Y, Cummings PT et al (2016) Enhancing graphene capacitance by nitrogen: effects of do** configuration and concentration. Phys Chem Chem Phys 18(6):4668. https://doi.org/10.1039/c5cp06952a

    Article  CAS  Google Scholar 

  40. Kupgan G, Liyana-Arachchi TP, Colina CM (2017) NLDFT pore size distribution in amorphous microporous materials. Langmuir 33:11138–11145

    Article  CAS  Google Scholar 

  41. Ilnicka A, Lukaszewicz JP, Shimanoe K et al (2018) Urea treatment of nitrogen-doped carbon leads to enhanced performance for the oxygen reduction reaction. J Mater Res 33(11):1612–1624

    Article  CAS  Google Scholar 

  42. Titirici M, White R, Falco C et al (2012) Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage. Energy Environ Sci 5(5):6796–6822

    Article  Google Scholar 

  43. Wabo SG, Klepel O (2021) Nitrogen release and pore formation through KOH activation of nitrogen-doped carbon materials: an evaluation of the literature. Carbon Letters 31:589–592

    Article  Google Scholar 

  44. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38(9):2520. https://doi.org/10.1039/b813846j

    Article  CAS  Google Scholar 

  45. Tong X, Chen Z, Zhuo H et al (2019) Tailoring the physicochemical properties of chitosan-derived N-doped carbon by controlling hydrothermal carbonization time for high-performance supercapacitor application. Carbohydr Polym 207:764. https://doi.org/10.1016/j.carbpol.2018.12.048

    Article  CAS  Google Scholar 

  46. Lin Z, **ang X, Peng S et al (2018) Facile synthesis of chitosan-based carbon with rich porous structure for supercapacitor with enhanced electrochemical performance. J Electroanal Chem 823:563. https://doi.org/10.1016/j.jelechem.2018.06.031

    Article  CAS  Google Scholar 

  47. Yuan M, Zhang Y, Niu B et al (2019) Chitosan-derived hybrid porous carbon with the novel tangerine pith-like surface as supercapacitor electrode. J Mater Sci 54(23):14456. https://doi.org/10.1007/s10853-019-03911-z

    Article  CAS  Google Scholar 

  48. Tian K, Wang J, Cao L et al (2020) Single-site pyrrolic-nitrogen-doped sp(2)-hybridized carbon materials and their pseudocapacitance. Nat Commun 11(1):3884. https://doi.org/10.1038/s41467-020-17727-y

    Article  CAS  Google Scholar 

  49. Cheng J, Xu Q, Wang X et al (2019) Ultrahigh-surface-area nitrogen-doped hierarchically porous carbon materials derived from chitosan and betaine hydrochloride sustainable precursors for high-performance supercapacitors. Sustain Energy Fuels 3(5):1215. https://doi.org/10.1039/c9se00072k

    Article  CAS  Google Scholar 

  50. Ahmed N, Amer A, Ali BA et al (2020) Boosting the cyclic stability and supercapacitive performance of graphene hydrogels via excessive nitrogen do**: experimental and DFT insights. Sustainable Mater Technol. https://doi.org/10.1016/j.susmat.2020.e00206

    Article  Google Scholar 

  51. Helseth LE (2021) Comparison of methods for finding the capacitance of a supercapacitor. J Energy Storage. https://doi.org/10.1016/j.est.2021.102304

    Article  Google Scholar 

  52. Taberna PL, Simon P, Fauvarque JF (2003) Electrochemical Characteristics and Impedance Spectroscopy Studies of Carbon-Carbon Supercapacitors. J Electrochem Soc 10(1149/1):1543948

    Google Scholar 

  53. Wang C, Zhong G, Zhao W et al (2020) Chitosan-derived three-dimensional porous graphene for advanced supercapacitors. Fron Energy Res. https://doi.org/10.3389/fenrg.2020.00061

    Article  Google Scholar 

  54. Wu Q, Gao M, Cao S et al (2019) Chitosan-based layered carbon materials prepared via ionic-liquid-assisted hydrothermal carbonization and their performance study. J Taiwan Inst Chem Eng 101:231

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51602084), Natural Science Foundation of Heilongjiang (YQ2019E030) and Foundation for Universities of Heilongjiang Province (LGYC2018JC032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongliang Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Chris Cornelius.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, T., Wang, C., Han, Z. et al. Chitosan-derived N-doped porous carbon with enhanced nitrogen concentration and tailored nitrogen configuration. J Mater Sci 57, 8739–8751 (2022). https://doi.org/10.1007/s10853-022-07224-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07224-6

Navigation