Log in

Hollow polypyrrole/Ni/PVDF microspheres for broadband microwave absorption via a spray phase inversion method

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

There is growing interest in porous multi-component composites as efficient electromagnetic wave absorption (EMWA) materials at microwave frequencies. Herein, a novel spray phase inversion method was used to fabricate porous composites containing 1D polypyrrole (PPy) nanofibers and 1D nickel nanochains (Ni-NC) in hollow polyvinylidene fluoride (PVDF) microspheres. Interconnected conductive and magnetic networks endowed the hollow PPy/Ni-NC/PVDF microspheres with remarkable EMWA properties in the 18–40 GHz region. By optimizing the PPy and Ni-NC contents, the minimum reflection loss (RLmin) in the composite microspheres reached −47.2 dB (at 25.36 GHz) and −39.8 dB (at 31.30 GHz). The effective absorption bandwidth (EAB) could be tuned to cover 18–40 GHz range by varying the absorber thickness from 1.0 to 3.5 mm. The results show that magnetic materials (Ni-NC) with large aspect ratio and hollow microsphere-shaped absorbers are beneficial for improving EMWA performance. Results guide the future development of low-cost/high performance EMWA materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Scheme 2

Similar content being viewed by others

References

  1. Narang SB, Pubby K (2017) Electromagnetic characterization of Co-Ti-doped Ba-M ferrite-based frequency-tunable microwave absorber in 12.4-40 GHz. J Supercond Nov Magn 30:511–520

    Article  CAS  Google Scholar 

  2. Ge YQ, Li CP, Waterhouse GIN, Zhang ZM, Yu LM (2021) ZnFe2O4@SiO2 @Polypyrrole nanocomposites with effcient electromagnetic wave absorption properties in the K and Ka band regions. Ceram Int 47:1728–1739

    Article  CAS  Google Scholar 

  3. Pattanayak SS, Laskar SH, Sahoo S (2021) Progress on agricultural residue-based microwave absorber: a review and prospects. J Mater Sci 56: 4097–4119. https://doi.org/10.1007/s10853-020-05557-8

    Article  CAS  Google Scholar 

  4. Yusoff AN, Abdullah MH, Ahmad SH, Jusoh SF, Mansor AA (2002) Electromagnetic and absorption properties of some microwave absorbers. J Appl Phys 92:876. 10.1063/1.1489092

    Article  CAS  Google Scholar 

  5. Gao S, Zhang GZ, Wang Y, Han XP, Huang Y, Liu PB (2021) MOFs derived magnetic porous carbon microspheres constructed by core-shell Ni@C with highperformance microwave absorption. J Mater Sci Technol 88:56–65

    Article  Google Scholar 

  6. Li CP, Chen GB, Jiang WT, Jiang XH, Yan XF (2021) High-performance electromagnetic wave absorption of FeNi/N, S codoped carbon composites in 2–40 GHz. Carbon 174:201–213

    Article  CAS  Google Scholar 

  7. Kaur P, Bahel S, Narang SB (2018) Broad-band microwave absorption of Sr0.85La0.15(MnZr)xFe12-2xO19 hexagonal ferrite in 18–40 GHz frequency range. J Magn Magn Mater 460:489–494

    Article  CAS  Google Scholar 

  8. Narang SB, Pubby K, Singh C (2017) Thickness and composition tailoring of K- and Ka-Band microwave absorption of BaCoxTixFe(12–2x)O19 ferrites. J Eelectron Mater 46:718–728

    Article  CAS  Google Scholar 

  9. Liu FB, Li CP, Jiang XH, Waterhouse GIN, **ng CJ, Zhang ZM, Yu LM (2020) Novel three-dimensional TiO2-Fe3O4@polypyrrole composites with tunable microwave absorption in the 2–40 GHz frequency range. J Mater Sci 55:15493–15509. https://doi.org/10.1007/s10853-020-05114-3

    Article  CAS  Google Scholar 

  10. Dong CS, Wang X, Zhou PH, Liu T, **e TL, Deng LJ (2014) Microwave magnetic and absorption properties of M-type ferrite BaCoxTixFe12-2xO19 in the Ka band. J Magn Magn Mater 354:340–344

    Article  CAS  Google Scholar 

  11. Peymanfar R, Fazlalizadeh F (2020) Microwave absorption performance of ZnAl2O4. Chem Eng J 402:126089

    Article  CAS  Google Scholar 

  12. Qiao MT, Li JX, Wei D, He XW, Lei XF, Wei J, Zhang QY (2021) Chain-like Fe3O4@void@mSiO2@MnO2 composites with multiple porous shells toward highly effective microwave absorption application. Micropor Mesopor Mat 314:110867

    Article  CAS  Google Scholar 

  13. Bao Y, Guo R, Liu C, Li S, Ma JZ (2020) Design of magnetic triple-shell hollow structural Fe3O4/FeCo/C composite microspheres with broad bandwidth and excellent electromagnetic wave absorption performance. Ceram Int 46:23932–23940

    Article  CAS  Google Scholar 

  14. Wu ZC, Pei K, **ng LS, Yu XF, You WB, Che RC (2019) Enhanced microwave absorption performance from magnetic coupling of magnetic nanoparticles suspended within hierarchically tubular composite. Adv Funct Mater 29:1901448

    Article  CAS  Google Scholar 

  15. Zhang H, Jia Z, Feng A, Zhou Z, Zhang C, Wang K, Liu N, Wu G (2020) Enhanced microwave absorption performance of sulfur-doped hollow carbon microspheres with mesoporous shell as a broadband absorber. Compos Commun 1942–50

  16. Liu QH, Cao Q, Bi H, Liang CY, Yuan KP, She W, Yang YJ, Che RC (2016) CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wide band microwave absorption. Adv Mater 28:486–490

    Article  CAS  Google Scholar 

  17. Hu FF, Nan H, Wang MQ, Lin Y, Yang HB, Qiu Y, Wen B (2021) Construction of core-shell BaFe12O19@MnO2 composite for effectively enhancing microwave absorption performance. Ceram Int 47:16579–16587

    Article  CAS  Google Scholar 

  18. Tao JQ, Zhou JT, Yao ZJ, Jiao ZB, Wei B, Tan RY, Li Z (2021) Multi-shell hollow porous carbon nanoparticles with excellent microwave absorption properties. Carbon 172542–555

  19. Zhang HH, Jia ZR, Feng AL, Zhou ZH, Zhang CH, Wang KK, Liu N, Wu GL (2020) Enhanced microwave absorption performance of sulfur-doped hollow carbon microspheres with mesoporous shell as a broad band absorber. Compos Commun 1942–50

  20. Wu F, Yang K, Li Q, Shah T, Ahmad M, Zhang QY, Zhang BL (2021) Biomass-derived 3D magnetic porous carbon fibers with a helical/chiral structure toward superior microwave absorption. Carbon 173:918–931

    Article  CAS  Google Scholar 

  21. Tong ZY, Liao ZJ, Liu YY, Ma ML, Bi YX, Huang WB, Ma Y, Qiao MT, Wu GL (2021) Hierarchical Fe3O4/Fe@C@MoS2 core-shell nanofibers for efficient microwave absorption. Carbon 179:646–654

    Article  CAS  Google Scholar 

  22. Liu FB, Li CP, Waterhouse GIN, Jiang XH, Zhang ZM, Yu LM (2021) Lightweight PVDF/γ-Fe2O3/PANI foam for efficient broadband microwave absorption in the K and Ka bands. J Alloy Compd 876:159983

    Article  CAS  Google Scholar 

  23. Zhao B, Deng JH, Zhao CX, Wang CD, Chen YG, Hamidinejad M, Li RS, Park CB (2020) Achieving wide band microwave absorption properties in PVDF nanocomposite foams with an ultra-low MWCNT content by introducing a microcellular structure. J Mater Chem C 8:58–70

    Article  CAS  Google Scholar 

  24. Zhao B, Li Y, Ji HY, Bai PW, Wang S, Fan BB, Guo XQ, Zhang R (2021) lightweight graphene aerogels by decoration of 1D CoNi chains and CNTs to machieve ultra-wide microwave absorption. Carbon 176:411–420

    Article  CAS  Google Scholar 

  25. Green M, Tran ATV, Chen XB (2020) Maximizing the microwave absorption performance of polypyrrole by data-driven discovery. Compos Sci Technol 199:108332

    Article  CAS  Google Scholar 

  26. Acharya S, Alegaonkar P, Datar S (2019) Effect of formation of heterostructure of SrAl4Fe8O19/RGO/PVDF on the microwave absorption properties of the composite. Chem Eng J 374:144–154

    Article  CAS  Google Scholar 

  27. Li CP, Ge YQ, Jiang XH, Waterhouse GIN, Zhang ZM, Yu LM (2018) Porous Fe3O4/C microspheres for efficient broadband electromagnetic wave absorption. Ceram Int 44:19171–19183

    Article  CAS  Google Scholar 

  28. Li ZJ, Lin H, Ding SQ, Ling HL, Wang T, Miao ZQ, Zhang M, Men AL, Li QD (2020) Synthesis and enhanced electromagnetic wave absorption performances of Fe3O4@C decorated walnut shell-derived porous carbon. Carbon 167:148–159

    Article  CAS  Google Scholar 

  29. Zhang XJ, Zhu JQ, Yin PG, Guo AP, Huang AP, Guo L, Wang GS (2018) Tunable high-performance microwave absorption of Co1-xS hollow spheres constructed by nanosheets within ultralow filler loading. Adv Funct Mater 28:1800761

    Article  CAS  Google Scholar 

  30. Peymanfar R, Ghorbanian-Gezaforodi S, Selseleh-Zakerin E, Ahmadi A, Ghaffari A (2020) Tailoring La0.8Sr0.2MnO3/La/Sr nanocomposite using a novel complementary method as well as dissecting its microwave, shielding, optical, and magnetic characteristics. Ceram Int 46:20896–20904

    Article  CAS  Google Scholar 

  31. Peymanfar R, Selseleh-Zakerin E, Ahmadi A, Sharif A, Mohammad MM (2021) Regulating microwave absorption and energy bandgap using caulifower-like polyaniline coated on La0.8Sr0.2FeO3 nanoparticles. J Mater Sci-Mater El 32:25679–25687

    Article  CAS  Google Scholar 

  32. Che RC, Peng LM, Duan XF, Chen Q, Liang XL (2004) Microwave absorption enhancement and complex permittivity and permeability of fe encapsulated within carbon nanotubes. Adv Mater 16:401–405

    Article  CAS  Google Scholar 

  33. Sun H, Che RC, You X, Jiang YS, Yang ZB, Deng J, Qiu LB, Peng HS (2014) Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv Mater 26:8120–8125

    Article  CAS  Google Scholar 

  34. Cheng Y, Cao JM, Li Y, Li ZY, Zhao HQ, Ji GB, Du YW (2018) The outside-in approach to construct Fe3O4 nanocrystals/mesoporous carbon hollow spheres Core Shell hybrids toward microwave absorption. ACS Sustain Chem Eng 6:1427–1435

    Article  CAS  Google Scholar 

  35. Peymanfar R, Ahmadi A, Selseleh-Zakerin E, Ghaffari A, Mohammad M, Sharif A (2021) Electromagnetic and optical characteristics of wrinkled Ni nanostructure coated on carbon microspheres. Chem Eng J 405:126985

    Article  CAS  Google Scholar 

  36. Peymanfar R, Ahmadi A, Selseleh-Zakerin E (2020) Evaluation of the size and medium effects on the microwave absorbing, magnetic, electromagnetic shielding, and optical properties using CuCo2S4 nanoparticles. J Alloy Compd 848:156453

    Article  CAS  Google Scholar 

  37. Zhao HQ, Cheng Y, Lv HL, Ji GB, Du YW (2019) A novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorption. Carbon 142:245–253

    Article  CAS  Google Scholar 

  38. Jonscher AK (1977) The ‘universal’ dielectric response. Nature 267:673–679

    Article  CAS  Google Scholar 

  39. Liang J, Chen J, Shen HQ, Hu KT, Zhao BN, Kong J (2021) Hollow porous bowl-like nitrogen-doped cobalt/carbon nanocomposites with enhanced electromagnetic wave absorption. Chem Mater 33:1789–1798

    Article  CAS  Google Scholar 

  40. Cao MS, Yang J, Song WL, Zhang DQ, Wen B, ** HB, Hou ZL, Yuan J (2012) Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption. ACS Appl Mater Interfaces 4:6949–6956

    Article  CAS  Google Scholar 

  41. Chen F, Luo H, Cheng YZ, Liu JL, Wang X, Gong RZ (2019) Fe/Fe3O4@N-doped carbon hexagonal plates decorated with Ag nanoparticles for microwave absorption. ACS Appl Nano Mater 2:7266–7278

    Article  CAS  Google Scholar 

  42. Peymanfar R, Selseleh-Zakerin E, Ahmadi A, Tavassoli SH (2021) Architecting functionalized carbon microtube/carrollite nanocomposite demonstrating signifcant microwave characteristics. Sci Rep 11:11932

    Article  CAS  Google Scholar 

  43. Deng LG, Han MG (2007) Microwave absorbing performances of multiwalled carbon nanotube composites with negative permeability. Appl Phys Lett 91:23119

    Article  CAS  Google Scholar 

  44. Liang LY, Han GJ, Li Y, Zhao B, Zhou B, Feng YZ, Ma JM, Wang YM, Zhang R, Liu CT (2019) Promising Ti3C2Tx MXene/Ni chain hybrid with excellent electromagnetic wave absorption and shielding capacity. ACS Appl Mater Interfaces 11:25399–25409

    Article  CAS  Google Scholar 

  45. Gholipur R, Khorshidi Z, Bahari A (2017) Enhanced absorption performance of carbon nanostructure based metamaterials and tuning impedance matching behavior by an external AC electric field. ACS Appl Mater Interfaces 9:12528–12539

    Article  CAS  Google Scholar 

  46. Tian X, Meng FB, Meng FC, Chen XN, Guo YF, Wang Y, Zhu WJ, Zhou ZW (2017) Synergistic enhancement of microwave absorption using hybridized Polyaniline@helical CNTs with dual chirality. ACS Appl Mater Interfaces 18:915711–915718

    Google Scholar 

  47. Yang YF, Xu DM, Yu LF, Wang FL, Wang Z, Wu LL, Liu W, Liu JR (2021) Synthesis of MOF-derived Fe7S8/C rod-like composites by controlled proportion of carbon for highly efficient electromagnetic wave absorption. Compos Part A 142:106246

    Article  CAS  Google Scholar 

  48. Zuo XD, Xu P, Zhang CY, Li MZ, Jiang XY, Yue XG (2019) Porous magnetic carbon nanofibers (P-CNF/Fe) for low-frequency electromagnetic wave absorption synthesized by electrospinning. Ceram Int 45:4474–4481

    Article  CAS  Google Scholar 

  49. Miao P, Cheng KY, Li HQ, Gu JW, Chen KJ, Wang S, Wang D, Liu TX, Kong J (2019) Poly(dimethylsilylene)diacetylene guided ZIF-Based heterostructures for full ku-band electromagnetic wave absorption. ACS Appl Mater Interfaces 11:17706–17713

    Article  CAS  Google Scholar 

  50. Li T, Zhi DD, Chen Y, Li B, Zhou ZW, Meng FB (2020) Multiaxial electrospun generation of hollow graphene aerogel spheres for broadband high-performance microwave absorption. Nano Res 13:477–484

    Article  CAS  Google Scholar 

  51. He GH, Duan YP, Pang HF, Hu JJ (2020) Superior microwave absorption based on ZnO capped MnO2 nanostructures. Adv Mater Interfaces 7:2000407

    Article  CAS  Google Scholar 

  52. Gao S, Wang GS, Guo L, Yu SH (2020) Tunable and ultra-efficient microwave absorption properties of trace N-doped two-dimensional carbon-based nanocomposites loaded with multi-rare earth oxides. Small 16:1906668

    Article  CAS  Google Scholar 

  53. Feng J, Zong Y, Sun Y, Zhang Y, Yang X, Long GK, Wang Y, Lia XH, Zheng XL (2018) Optimization of porous FeNi3/N-GN composites with superior microwave absorption performance. Chem Eng J 345:441–451

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by National Key Research and Development Project (2019YFC0312102, 2019YFC0312101), NSFC-Shandong Joint Fund (U1706225), GINW acknowledges funding support from the MacDiarmid Institute for Advanced Materials and Nanotechnology and the Dodd Walls Centre for Photonic and Quantum Technologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiming Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Dale Huber.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 3400 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Sui, J., Waterhouse, G.I.N. et al. Hollow polypyrrole/Ni/PVDF microspheres for broadband microwave absorption via a spray phase inversion method. J Mater Sci 57, 7570–7586 (2022). https://doi.org/10.1007/s10853-022-07173-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07173-0

Navigation