Log in

A self-coated hollow mesoporous silica nanoparticle for tumor targeting and chemo-photothermal therapy

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Chemotherapy combined with photothermal therapy, a promising strategy for cancer treatment, has a high potential to control drug release and improve therapeutic efficacy. Inspired by this, a pH/NIR dual-responsive drug delivery system (DOX/HMSN@PDA-HA nanoparticles, simplified as DHPH NPs) based on hollow mesoporous silica nanoparticles (HMSNs) was designed for targeted therapy of tumor, by self-coating polydopamine-modified hyaluronic acid (HA-PDA) layer. Doxorubicin (DOX) was loaded into HMSNs for chemotherapy, while HA-PDA coating acted as photothermal therapy agent with tumor-targeted capability. Characterizations suggest that DHPH nanoparticles have been successfully constructed with excellent drug loading capacity (36.91%) and satisfactory photothermal conversion efficiency (25.74%). Furthermore, in vitro results indicate that DHPH nanoparticles could precisely target human hepatocellular liver carcinoma cells and effectively suppress the tumor cells growth under 808 nm laser irradiation (2 W cm−2). Therefore, this study presents a feasible strategy for develo** efficient platform for tumor-targeted chemo-photothermal therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. He H, **e H, Chen Y, Li C, Han D, Xu F, Lyu J (2020) Global, regional, and national burdens of bladder cancer in 2017: estimates from the 2017 global burden of disease study. BMC Public Health 20(1):1693. https://doi.org/10.1186/s12889-020-09835-7

    Article  Google Scholar 

  2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249. https://doi.org/10.3322/caac.21660

    Article  Google Scholar 

  3. Wang ZY, Li ZY, Sun ZL, Wang SR, Ali Z, Zhu S, Liu S, Ren QFS, Wang B, Hou Y (2020) Visualization nanozyme based on tumor microenvironment “unlocking” for intensive combination therapy of breast cancer. Sci Adv 6(48):8733–8743. https://doi.org/10.1126/sciadv.abc8733

    Article  CAS  Google Scholar 

  4. Song Y, Qu Z, Li J, Shi L, Zhao W, Wang H, Sun T, Jia T, Sun Y (2021) Fabrication of the biomimetic DOX/Au@Pt nanoparticles hybrid nanostructures for the combinational chemo/photothermal cancer therapy. J Alloy Compd 881:160592. https://doi.org/10.1016/j.jallcom.2021.160592

    Article  CAS  Google Scholar 

  5. Yang D, Xu J, Yang G, Zhou Y, Ji H, Bi H, Gai S, He F, Yang P (2018) Metal-organic frameworks join hands to create an anti-cancer nanoplatform based on 808 nm light driving up-conversion nanoparticles. Chem Eng J 344:363–374. https://doi.org/10.1016/j.cej.2018.03.101

    Article  CAS  Google Scholar 

  6. Yang G, Tian J, Chen C, Jiang D, Xue Y, Wang C, Gao Y, Zhang W (2019) An oxygen self-sufficient NIR-responsive nanosystem for enhanced PDT and chemotherapy against hypoxic tumors. Chem Sci 10(22):5766–5772. https://doi.org/10.1039/c9sc00985j

    Article  CAS  Google Scholar 

  7. Liu X, Zhang M, Yan D, Deng G, Wang Q, Li C, Zhao L, Lu J (2020) A smart theranostic agent based on Fe-HPPy@Au/DOX for CT imaging and PTT/chemotherapy/CDT combined anticancer therapy. Biomater Sci 8(15):4067–4072. https://doi.org/10.1039/d0bm00623h

    Article  CAS  Google Scholar 

  8. Deng Z, Fang C, Ma X, Li X, Zeng YJ, Peng X (2020) One stone two birds: Zr–Fc metal-organic framework nanosheet for synergistic photothermal and chemodynamic cancer therapy. ACS Appl Mater Interfaces 12(18):20321–20330. https://doi.org/10.1021/acsami.0c06648

    Article  CAS  Google Scholar 

  9. Meng X, Zhang B, Yi Y, Cheng H, Wang B, Liu Y, Gong T, Yang W, Yao Y, Wang H, Bu W (2020) Accurate and real-time temperature monitoring during MR imaging guided PTT. Nano Lett 20(4):2522–2529. https://doi.org/10.1021/acs.nanolett.9b05267

    Article  CAS  Google Scholar 

  10. Wang K, Cai Z, Fan R, Yang Q, Zhu T, Jiang Z, Ma Y (2020) A tumor-microenvironment-responsive nanomaterial for cancer chemo-photothermal therapy. RSC Adv 10(37):22091–22101. https://doi.org/10.1039/d0ra04171h

    Article  CAS  Google Scholar 

  11. Wang H, Williams GR, **e X, Wu M, Wu J, Zhu L-M (2020) Stealth polydopamine-based nanoparticles with red blood cell membrane for the chemo-photothermal therapy of cancer. ACS Appl Bio Mater 3(4):2350–2359. https://doi.org/10.1021/acsabm.0c00094

    Article  CAS  Google Scholar 

  12. Khafaji M, Zamani M, Golizadeh M, Bavi O (2019) Inorganic nanomaterials for chemo/photothermal therapy: a promising horizon on effective cancer treatment. Biophys Rev 11(3):335–352. https://doi.org/10.1007/s12551-019-00532-3

    Article  CAS  Google Scholar 

  13. Yu D, Wang Y, Chen J, Liu S, Deng S, Liu C, McCulloch I, Yue W, Cheng D (2021) nCo-delivery of NIR-II semiconducting polymer and pH-sensitive doxorubicin-conjugated prodrug for photothermal/chemotherapy. Acta Biomater. https://doi.org/10.1016/j.actbio.2021.10.009

    Article  Google Scholar 

  14. Sun H, Zhang Q, Li J, Peng S, Wang X, Cai R (2021) Near-infrared photoactivated nanomedicines for photothermal synergistic cancer therapy. Nano Today 37:101073. https://doi.org/10.1016/j.nantod.2020.101073

    Article  CAS  Google Scholar 

  15. Zhang W, Cai K, Li X, Zhang J, Ma Z, Foda MF, Mu Y, Dai X, Han H (2019) Au hollow nanorods-chimeric peptide nanocarrier for NIR-II photothermal therapy and real-time apoptosis imaging for tumor theranostics. Theranostics 9(17):4971–4981. https://doi.org/10.7150/thno.35560

    Article  CAS  Google Scholar 

  16. Zheng S, Dou P, ** S, Jiao M, Wang W, ** Z, Wang Y, Li J, Xu K (2021) Tumor microenvironment/NIR-responsive carbon monoxide delivery with hollow mesoporous CuS nanoparticles for MR imaging guided synergistic therapy. Mater Des 205:109731. https://doi.org/10.1016/j.matdes.2021.109731

    Article  CAS  Google Scholar 

  17. Chen Q, He S, Zhang F, Cui F, Liu J, Wang M, Wang D, ** Z, Li C (2020) A versatile Pt–Ce6 nanoplatform as catalase nanozyme and NIR-II photothermal agent for enhanced PDT/PTT tumor therapy. Sci China Mater 64(2):510–530. https://doi.org/10.1007/s40843-020-1431-5

    Article  CAS  Google Scholar 

  18. Chang M, Hou Z, Wang M, Yang C, Wang R, Li F, Liu D, Peng T, Li C, Lin J (2021) Single-atom Pd nanozyme for ferroptosis-boosted mild-temperature photothermal therapy. Angew Chem 60(23):12971–12979. https://doi.org/10.1002/anie.202101924

    Article  CAS  Google Scholar 

  19. Chang X, Zhang M, Wang C, Zhang J, Wu H, Yang S (2020) Graphene oxide/BaHoF5/PEG nanocomposite for dual-modal imaging and heat shock protein inhibitor-sensitized tumor photothermal therapy. Carbon 158:372–385. https://doi.org/10.1016/j.carbon.2019.10.105

    Article  CAS  Google Scholar 

  20. Chen YW, Su YL, Hu SH, Chen SY (2016) Functionalized graphene nanocomposites for enhancing photothermal therapy in tumor treatment. Adv Drug Deliv Rev 105(Pt B):190–204. https://doi.org/10.1016/j.addr.2016.05.022

    Article  CAS  Google Scholar 

  21. Cai W, Gao H, Chu C, Wang X, Wang J, Zhang P, Lin G, Li W, Liu G, Chen X (2017) Engineering phototheranostic manoscale metal-organic frameworks for multimodal imaging-guided cancer therapy. ACS Appl Mater Interfaces 9(3):2040–2051. https://doi.org/10.1021/acsami.6b11579

    Article  CAS  Google Scholar 

  22. Pu Y, Zhu Y, Qiao Z, **n N, Chen S, Sun J, ** R, Nie Y, Fan H (2021) A Gd-doped polydopamine (PDA)-based theranostic nanoplatform as a strong MR/PA dual-modal imaging agent for PTT/PDT synergistic therapy. J Mater Chem B 9(7):1846–1857. https://doi.org/10.1039/d0tb02725a

    Article  CAS  Google Scholar 

  23. Lu J, Cai L, Dai Y, Liu Y, Zuo F, Ni C, Shi M, Li J (2021) Polydopamine-based nanoparticles for photothermal therapy/chemotherapy and their synergistic therapy with autophagy inhibitor to promote antitumor treatment. Chem Rec 21(4):781–796. https://doi.org/10.1002/tcr.202000170

    Article  CAS  Google Scholar 

  24. Fan R, Chen C, Hou H, Chuan D, Mu M, Liu Z, Liang R, Guo G, Xu J (2021) Tumor acidity and near-infrared light responsive dual drug delivery polydopamine-based nanoparticles for chemo-photothermal therapy. Adv Funct Mater 31(18):2009733. https://doi.org/10.1002/adfm.202009733

    Article  CAS  Google Scholar 

  25. Zhu W, Chen M, Liu Y, Tian Y, Song Z, Song G, Zhang X (2019) A dual factor activated metal-organic framework hybrid nanoplatform for photoacoustic imaging and synergetic photo-chemotherapy. Nanoscale 11(43):20630–20637. https://doi.org/10.1039/c9nr06349h

    Article  CAS  Google Scholar 

  26. Huang C, Zhang L, Guo Q, Zuo Y, Wang N, Wang H, Kong D, Zhu D, Zhang L (2021) Robust nanovaccine based on polydopamine-coated mesoporous silica nanoparticles for effective photothermal-immunotherapy against melanoma. Adv Funct Mater 31(18):2010637. https://doi.org/10.1002/adfm.202010637

    Article  CAS  Google Scholar 

  27. Zhang C, Wu D, Lu L, Duan X, Liu J, **e X, Shuai X, Shen J, Cao Z (2018) Multifunctional hybrid liposome as a theranostic platform for magnetic resonance imaging guided photothermal therapy. ACS Biomater Sci Eng 4(7):2597–2605. https://doi.org/10.1021/acsbiomaterials.8b00176

    Article  CAS  Google Scholar 

  28. Zhang K, Zhang Y, Meng X, Lu H, Chang H, Dong H, Zhang X (2018) Light-triggered theranostic liposomes for tumor diagnosis and combined photodynamic and hypoxia-activated prodrug therapy. Biomaterials 185:301–309. https://doi.org/10.1016/j.biomaterials.2018.09.033

    Article  CAS  Google Scholar 

  29. Yang L, Zhang C, Liu J, Huang F, Zhang Y, Liang XJ, Liu J (2020) ICG-conjugated and (125) I-labeled polymeric micelles with high biosafety for multimodality imaging-guidedphotothermal therapy of tumors. Adv Healthc Mater 9(5):e1901616. https://doi.org/10.1002/adhm.201901616

    Article  CAS  Google Scholar 

  30. Zhong S, Chen C, Yang G, Zhu Y, Cao H, Xu B, Luo Y, Gao Y, Zhang W (2019) Acid-triggered nanoexpansion polymeric micelles for enhanced photodynamic therapy. ACS Appl Mater Interfaces 11(37):33697–33705. https://doi.org/10.1021/acsami.9b12620

    Article  CAS  Google Scholar 

  31. Shang W, Peng L, Guo P, Hui H, Yang X, Tian J (2020) Metal-organic frameworks as a theranostic nanoplatform for combinatorial chemophotothermal therapy adapted to different administration. ACS Biomater Sci Eng 6(2):1008–1016. https://doi.org/10.1021/acsbiomaterials.9b01075

    Article  CAS  Google Scholar 

  32. Huang L, Liu J, Gao F, Cheng Q, Lu B, Zheng H, Xu H, Xu P, Zhang X, Zeng X (2018) A dual-responsive, hyaluronic acid targeted drug delivery system based on hollow mesoporous silica nanoparticles for cancer therapy. J Mater Chem B 6(28):4618–4629. https://doi.org/10.1039/c8tb00989a

    Article  CAS  Google Scholar 

  33. Zhou S, Zhong Q, Wang Y, Hu P, Zhong W, Huang C-B, Yu Z-Q, Ding C-D, Liu H, Fu J (2022) Chemically engineered mesoporous silica nanoparticles-based intelligent delivery systems for theranostic applications in multiple cancerous/non-cancerous diseases. Coord Chem Rev 452:214309. https://doi.org/10.1016/j.ccr.2021.214309

    Article  CAS  Google Scholar 

  34. Chen Z, Liao T, Wan L, Kuang Y, Liu C, Duan J, Xu X, Xu Z, Jiang B, Li C (2021) Dual-stimuli responsive near-infrared emissive carbon dots/hollow mesoporous silica-based integrated theranostics platform for real-time visualized drug delivery. Nano Res 14(11):4264–4273. https://doi.org/10.1007/s12274-021-3624-4

    Article  CAS  Google Scholar 

  35. Yan T, He J, Liu R, Liu Z, Cheng J (2020) Chitosan capped pH-responsive hollow mesoporous silica nanoparticles for targeted chemo-photo combination therapy. Carbohydr Polym 231:115706. https://doi.org/10.1016/j.carbpol.2019.115706

    Article  CAS  Google Scholar 

  36. Ma G, Du X, Zhu J, Xu F, Yu H, Li J (2021) Multi-functionalized dendrimers for targeted co-delivery of sorafenib and paclitaxel in liver cancers. J Drug Deliv Sci Technol 63:102493. https://doi.org/10.1016/j.jddst.2021.102493

    Article  CAS  Google Scholar 

  37. Zhou Y, Chang C, Liu Z, Zhao Q, Xu Q, Li C, Chen Y, Zhang Y, Lu B (2021) Hyaluronic acid-functionalized hollow mesoporous silica nanoparticles as pH-sensitive nanocarriers for cancer chemo-photodynamic therapy. Langmuir ACS J Surf Colloids 37(8):2619–2628. https://doi.org/10.1021/acs.langmuir.0c03250

    Article  CAS  Google Scholar 

  38. Sun Q, Bi H, Wang Z, Li C, Wang X, Xu J, Zhu H, Zhao R, He F, Gai S, Yang P (2019) Hyaluronic acid-targeted and pH-responsive drug delivery system based on metal-organic frameworks for efficient antitumor therapy. Biomaterials 223:119473. https://doi.org/10.1016/j.biomaterials.2019.119473

    Article  CAS  Google Scholar 

  39. Chiesa E, Riva F, Dorati R, Greco A, Ricci S, Pisani S, Patrini M, Modena T, Conti B, Genta I (2020) On-chip synthesis of hyaluronic acid-based nanoparticles for selective inhibition of CD44+ human mesenchymal stem cell proliferation. Pharmaceutics 12(3):260–283. https://doi.org/10.3390/pharmaceutics12030260

    Article  CAS  Google Scholar 

  40. Yu F, Huang J, Yu Y, Lu Y, Chen Y, Zhang H, Zhou G, Sun Z, Liu J, Sun D, Zhang G, Zou H, Zhong Y (2016) Glutathione-responsive multilayer coated gold nanoparticles for targeted gene delivery. J Biomed Nanotechnol 12(3):503–515. https://doi.org/10.1166/jbn.2016.2177

    Article  CAS  Google Scholar 

  41. Chen K, Chang C, Liu Z, Zhou Y, Xu Q, Li C, Huang Z, Xu H, Xu P, Lu B (2020) Hyaluronic acid targeted and pH-responsive nanocarriers based on hollow mesoporous silica nanoparticles for chemo-photodynamic combination therapy. Colloids Surf B 194:111166. https://doi.org/10.1016/j.colsurfb.2020.111166

    Article  CAS  Google Scholar 

  42. Liu X, **e Z, Shi W, He Z, Liu Y, Su H, Sun Y, Ge D (2019) Polynorepinephrine nanoparticles: a novel photothermal nanoagent for chemo-photothermal cancer therapy. ACS Appl Mater Interfaces 11(22):19763–19773. https://doi.org/10.1021/acsami.9b03458

    Article  CAS  Google Scholar 

  43. Pu XQ, Ju XJ, Zhang L, Cai QW, Liu YQ, Peng HY, **e R, Wang W, Liu Z, Chu LY (2021) Novel multifunctional stimuli-responsive nanoparticles for synergetic chemo-photothermal therapy of tumors. ACS Appl Mater Interfaces 13(24):28802–28817. https://doi.org/10.1021/acsami.1c05330

    Article  CAS  Google Scholar 

  44. Jiang A, Liu Y, Ma L, Mao F, Liu L, Zhai X, Zhou J (2019) Biocompatible heat-shock protein inhibitor-delivered flowerlike short-wave infrared nanoprobe for mild temperature-driven highly efficient tumor ablation. ACS Appl Mater Interfaces 11(7):6820–6828. https://doi.org/10.1021/acsami.8b21483

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51773162 and 21204071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Lu.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Handling Editor: Dale Huber.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 90 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Chang, C., Wang, X. et al. A self-coated hollow mesoporous silica nanoparticle for tumor targeting and chemo-photothermal therapy. J Mater Sci 57, 6013–6025 (2022). https://doi.org/10.1007/s10853-022-07020-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07020-2

Navigation