Log in

Hierarchical Ag3PO4/TiO2@C composites derived from Ti3C2 MXene for enhanced photocatalytic activity

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Herein, a high-performance Ag3PO4/TiO2@C composite photocatalyst was successfully fabricated through the unique structure and interface designs. Firstly, a novel three-dimensional layered carbon-supported titanium dioxides (TiO2@C) nanosheets (NSs) are fabricated by employing the new-type two-dimensional layered transition metal Ti3C2 MXene as carbon skeleton and homologous titanium source via a facile hydrothermal method. Benefiting from the structure characters of Ti3C2 MXene and in-situ growth, the as-prepared TiO2@C NSs own a large surface area and good interface contact. On this basis, taking advantage of the surface electronegativity of Ti3C2 MXene drove TiO2@C, Ag3PO4 nanoparticles are further combined with TiO2@C via an electrostatic self-assembly method to improve the light-harvesting ability. The electrostatic self-assembly process is beneficial to the uniform growth of Ag3PO4 nanoparticles and the formation of a good heterostructure interface between Ag3PO4 and TiO2@C. Therefore, the as-prepared Ag3PO4/TiO2@C composites as photocatalyst exhibit excellent photocatalytic performance, and the optimal photocatalytic degradation rate constant for methylene blue achieves 4.768 × 10–2 min−1. The enhanced photocatalytic performance is mainly attributed to the synergistic effect of larger surface area, better light-harvesting ability, and superior charge transfer and separation characters. Additionally, the growth and optimization mechanisms are also deeply studied in the present paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Hou H, Gao F, Wang L, Shang M, Yang Z, Zheng J, Yang W (2016) Superior thoroughly mesoporous ternary hybrid photocatalysts of TiO2/WO3/g-C3N4 nanofibers for visible-light-driven hydrogen evolution. J Mater Chem A 4:6276–6281. https://doi.org/10.1039/C6TA02307J

    Article  CAS  Google Scholar 

  2. Li J, Li H, Zhan G, Zhang L (2017) Solar water splitting and nitrogen fixation with layered bismuth oxyhalides. Acc Chem Res 50:112–121. https://doi.org/10.1021/acs.accounts.6b00523

    Article  CAS  Google Scholar 

  3. Qu Y, Duan X (2013) Progress, challenge and perspective of heterogeneous photocatalysts. Chem Soc Rev 42:2568–2580. https://doi.org/10.1039/C2CS35355E

    Article  CAS  Google Scholar 

  4. Kadam AN, Bhopate DP, Kondalkar VV, Majhi SM, Bathula CD, Tran A-V, Lee S-W (2018) Facile synthesis of Ag-ZnO core–shell nanostructures with enhanced photocatalytic activity. J Ind Eng Chem 61:78–86. https://doi.org/10.1016/j.jiec.2017.12.003

    Article  CAS  Google Scholar 

  5. Kumar A, Krishnan V (2021) Vacancy engineering in semiconductor photocatalysts: implications in hydrogen evolution and nitrogen fixation applications. Adv Funct Mater 31:2009807. https://doi.org/10.1002/adfm.202009807

    Article  CAS  Google Scholar 

  6. Ge M, Cai J, Iocozzia J, Cao C, Huang J, Zhang X, Shen J, Wang S, Zhang S, Zhang K-Q, Lai Y, Lin Z (2017) A review of TiO2 nanostructured catalysts for sustainable H2 generation. Int J Hydrogen Energ 42:8418–8449. https://doi.org/10.1016/j.ijhydene.2016.12.052

    Article  CAS  Google Scholar 

  7. **ang Q, Yu J, Jaroniec M (2012) Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J Am Chem Soc 134:6575–6578. https://doi.org/10.1021/ja302846n

    Article  CAS  Google Scholar 

  8. Zhao G, Xuan J, Gong Q, Wang L, Ren J, Sun M, Jia F, Yin G, Liu B (2020) In situ growing double-layer TiO2 nanorod arrays on new-type FTO electrodes for low-concentration NH3 detection at room temperature. ACS Appl Mater Inter 12:8573–8582. https://doi.org/10.1021/acsami.9b20337

    Article  CAS  Google Scholar 

  9. Tran VA, Nguyen TP, Kim IT, Lee S-W, Nguyen CT (2021) Excellent photocatalytic activity of ternary Ag@WO3@rGO nanocomposites under solar simulation irradiation. J Sci: Adv Mater Dev 6:108–117. https://doi.org/10.1016/j.jsamd.2020.12.001

    Article  CAS  Google Scholar 

  10. Ge M, Li Q, Cao C, Huang J, Li S, Zhang S, Chen Z, Zhang K, Al-Deyab SS, Lai Y (2017) One-dimensional TiO2 nanotube photocatalysts for solar water splitting. Adv Sci 4:1600152. https://doi.org/10.1002/advs.201600152

    Article  CAS  Google Scholar 

  11. Zhang R, Sun M, Zhao G, Yin G, Liu B (2019) Hierarchical Fe2O3 nanorods/TiO2 nanosheets heterostructure: growth mechanism, enhanced visible-light photocatalytic and photoelectrochemical performances. Appl Surf Sci 475:380–388. https://doi.org/10.1016/j.apsusc.2018.12.295

    Article  CAS  Google Scholar 

  12. Sun M, Liu X, Zhao G, Kong W, Xuan J, Tan S, Sun Y, Wei S, Ren J, Yin G (2019) Sn4+ do** combined with hydrogen treatment for CdS/TiO2 photoelectrodes: an efficient strategy to improve quantum dots loading and charge transport for high photoelectrochemical performance. J Power Sources 430:80–89. https://doi.org/10.1016/j.jpowsour.2019.05.019

    Article  CAS  Google Scholar 

  13. Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114:9919–9986. https://doi.org/10.1021/cr5001892

    Article  CAS  Google Scholar 

  14. Zou Y, Shi J-W, Ma D, Fan Z, Lu L, Niu C (2017) In situ synthesis of C-doped TiO2@g-C3N4 core-shell hollow nanospheres with enhanced visible-light photocatalytic activity for H2 evolution. Chem Eng J 322:435–444. https://doi.org/10.1016/j.cej.2017.04.056

    Article  CAS  Google Scholar 

  15. Ariza-Tarazona MC, Villarreal-Chiu JF, Barbieri V, Siligardi C, Cedillo-González EI (2019) New strategy for microplastic degradation: green photocatalysis using a protein-based porous N-TiO2 semiconductor. Ceram Int 45:9618–9624. https://doi.org/10.1016/j.ceramint.2018.10.208

    Article  CAS  Google Scholar 

  16. Asiltürk M, Sayılkan F, Arpaç E (2009) Effect of Fe3+ ion do** to TiO2 on the photocatalytic degradation of malachite green dye under UV and vis-irradiation. J Photoch Photobio A 203:64–71. https://doi.org/10.1016/j.jphotochem.2008.12.021

    Article  CAS  Google Scholar 

  17. Zhao F-M, Pan L, Wang S, Deng Q, Zou J-J, Wang L, Zhang X (2014) Ag3PO4/TiO2 composite for efficient photodegradation of organic pollutants under visible light. Appl Surf Sci 317:833–838. https://doi.org/10.1016/j.apsusc.2014.09.022

    Article  CAS  Google Scholar 

  18. Za H, Sun Q, Lv K, Zhang Z, Li M, Li B (2015) Effect of contact interface between TiO2 and g-C3N4 on the photoreactivity of g-C3N4/TiO2 photocatalyst: (0 0 1) vs (1 0 1) facets of TiO2. Appl Catal B: Environ 164:420–427. https://doi.org/10.1016/j.apcatb.2014.09.043

    Article  CAS  Google Scholar 

  19. Chandra M, Bhunia K, Pradhan D (2018) Controlled synthesis of CuS/TiO2 heterostructured nanocomposites for enhanced photocatalytic hydrogen generation through water splitting. Inorg Chem 57:4524–4533. https://doi.org/10.1021/acs.inorgchem.8b00283

    Article  CAS  Google Scholar 

  20. Matsubara K, Inoue M, Hagiwara H, Abe T (2019) Photocatalytic water splitting over Pt-loaded TiO2 (Pt/TiO2) catalysts prepared by the polygonal barrel-sputtering method. Appl Catal B: Environ 254:7–14. https://doi.org/10.1016/j.apcatb.2019.04.075v

    Article  CAS  Google Scholar 

  21. Huang J, He S, Goodsell JL, Mulcahy JR, Guo W, Angerhofer A, Wei WD (2020) Manipulating atomic structures at the Au/TiO2 interface for O2 activation. J Am Chem Soc 142:6456–6460. https://doi.org/10.1021/jacs.9b13453

    Article  CAS  Google Scholar 

  22. Chen M, Wang H, Chen X, Wang F, Qin X, Zhang C, He H (2020) High-performance of Cu-TiO2 for photocatalytic oxidation of formaldehyde under visible light and the mechanism study. Chem Eng J 390:124481. https://doi.org/10.1016/j.cej.2020.124481

    Article  CAS  Google Scholar 

  23. Kumar A, Choudhary P, Kumar A, Camargo PHC, Krishnan V (2021) Recent advances in plasmonic photocatalysis based on TiO2 and noble metal nanoparticles for energy conversion, environmental remediation, and organic synthesis. Small. https://doi.org/10.1002/smll.202101638

    Article  Google Scholar 

  24. Zhang Y, Zhao Z, Chen J, Cheng L, Chang J, Sheng W, Hu C, Cao S (2015) C-doped hollow TiO2 spheres: in situ synthesis, controlled shell thickness, and superior visible-light photocatalytic activity. Appl Catal B: Environ 165:715–722. https://doi.org/10.1016/j.apcatb.2014.10.063

    Article  CAS  Google Scholar 

  25. Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum MW (2011) Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 23:4248–4253. https://doi.org/10.1002/adma.201102306

    Article  CAS  Google Scholar 

  26. Ran F, Wang T, Chen S, Liu Y, Shao L (2020) Constructing expanded ion transport channels in flexible MXene film for pseudocapacitive energy storage. Appl Surf Sci 511:145627. https://doi.org/10.1016/j.apsusc.2020.145627

    Article  CAS  Google Scholar 

  27. Wang L, Chen L, Song P, Liang C, Lu Y, Qiu H, Zhang Y, Kong J, Gu J (2019) Fabrication on the annealed Ti3C2Tx MXene/Epoxy nanocomposites for electromagnetic interference shielding application. Compos Part B: Eng 171:111–118. https://doi.org/10.1016/j.compositesb.2019.04.050

    Article  CAS  Google Scholar 

  28. Pan Q, Zheng Y, Kota S, Huang W, Wang S, Qi H, Kim S, Tu Y, Barsoum MW, Li CY (2019) 2D MXene-containing polymer electrolytes for all-solid-state lithium metal batteries. Nanoscale Adv 1:395–402. https://doi.org/10.1039/C8NA00206A

    Article  CAS  Google Scholar 

  29. Cheng L, Li X, Zhang H, **ang Q (2019) Two-dimensional transition metal MXene-based photocatalysts for solar fuel generation. J Phys Chem Lett 10:3488–3494. https://doi.org/10.1021/acs.jpclett.9b00736

    Article  CAS  Google Scholar 

  30. Lv Z, Ma W, Wang M, Dang J, Jian K, Liu D, Huang D (2021) Co-Constructing Interfaces of multiheterostructure on MXene (Ti3C2Tx)-modified 3D self-supporting electrode for ultraefficient electrocatalytic HER in alkaline media. Adv Funct Mater 31:2102576. https://doi.org/10.1002/adfm.202102576

    Article  CAS  Google Scholar 

  31. Peng C, Yang X, Li Y, Yu H, Wang H, Peng F (2016) Hybrids of two-dimensional Ti3C2 and TiO2 exposing 001 facets toward enhanced photocatalytic activity. ACS Appl Mater Inter 8:6051–6060. https://doi.org/10.1021/acsami.5b11973

    Article  CAS  Google Scholar 

  32. Khazaei M, Arai M, Sasaki T, Estili M, Sakka Y (2014) The effect of the interlayer element on the exfoliation of layered Mo2AC (A= Al, Si, P, Ga, Ge, As or In) MAX phases into two-dimensional Mo2C nanosheets. Sci Technol Adv Mat 15:014208. https://doi.org/10.1088/1468-6996/15/1/014208

    Article  CAS  Google Scholar 

  33. Sharma V, Kumar A, Kumar A, Krishnan V (2022) Enhanced photocatalytic activity of two dimensional ternary nanocomposites of ZnO-Bi2WO6-Ti3C2 MXene under natural sunlight irradiation. Chemosphere 287:132119. https://doi.org/10.1016/j.chemosphere.2021.132119

    Article  CAS  Google Scholar 

  34. Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum MW (2012) Two-dimensional transition metal carbides. ACS Nano 6:1322–1331. https://doi.org/10.1021/nn204153h

    Article  CAS  Google Scholar 

  35. Li Z, Wang L, Sun D, Zhang Y, Liu B, Hu Q, Zhou A (2015) Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2. Mater Sci Eng: B 191:33–40. https://doi.org/10.1016/j.mseb.2014.10.009

    Article  CAS  Google Scholar 

  36. Hieu VQ, Phung TK, Nguyen T-Q, Khan A, Doan VD, Tran VA (2021) Photocatalytic degradation of methyl orange dye by Ti3C2–TiO2 heterojunction under solar light. Chemosphere 276:130154. https://doi.org/10.1016/j.chemosphere.2021.130154

    Article  CAS  Google Scholar 

  37. Liu J, Kong X, Li Y, Zhu S, Liang Y, Li Z, Wu S, Chang C, Cui Z, Yang X (2020) In situ synthesis of exfoliation TiO2@C hybrids with enhanced photocatalytic hydrogen evolution activity. Appl Surf Sci 530:147283. https://doi.org/10.1016/j.apsusc.2020.147283

    Article  CAS  Google Scholar 

  38. Hieu VQ, Lam TC, Khan A, Vo T-TT, Nguyen T-Q, Doan VD, Tran VA (2021) TiO2/Ti3C2/g-C3N4 ternary heterojunction for photocatalytic hydrogen evolution. Chemosphere 285:131429. https://doi.org/10.1016/j.chemosphere.2021.131429

    Article  CAS  Google Scholar 

  39. Wang J, Liu Y, Yang G (2018) Cobalt decorated ultra-thin Ti3C2 MXene electrocatalyst for high-efficiency hydrogen evolution reaction. Mater Res Express 6:025056. https://doi.org/10.1088/2053-1591/aaf1f0

    Article  CAS  Google Scholar 

  40. Ghassemi H, Harlow W, Mashtalir O, Beidaghi M, Lukatskaya MR, Gogotsi Y, Taheri ML (2014) In situ environmental transmission electron microscopy study of oxidation of two-dimensional Ti3C2and formation of carbon-supported TiO2. J Mater Chem A 2:14339–14343. https://doi.org/10.1039/C4TA02583K

    Article  CAS  Google Scholar 

  41. Li Y, Deng X, Tian J, Liang Z, Cui H (2018) Ti3C2 MXene-derived Ti3C2/TiO2 nanoflowers for noble-metal-free photocatalytic overall water splitting. Appl Mater Today 13:217–227. https://doi.org/10.1016/j.apmt.2018.09.004

    Article  Google Scholar 

  42. Sang X, **e Y, Lin MW, Alhabeb M, Van Aken KL, Gogotsi Y, Kent PRC, **ao K, Unocic RR (2016) Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene. ACS Nano 10:9193–9200. https://doi.org/10.1021/acsnano.6b05240

    Article  CAS  Google Scholar 

  43. **ang Q, Lang D, Shen T, Liu F (2015) Graphene-modified nanosized Ag3PO4 photocatalysts for enhanced visible-light photocatalytic activity and stability. Appl Catal B: Environ 162:196–203. https://doi.org/10.1016/j.apcatb.2014.06.051

    Article  CAS  Google Scholar 

  44. Sun B, Tao F, Huang Z, Yan W, Zhang Y, Dong X, Wu Y, Zhou G (2021) Ti3C2 MXene-bridged Ag/Ag3PO4 hybrids toward enhanced visible-light-driven photocatalytic activity. Appl Surf Sci 535:147354. https://doi.org/10.1016/j.apsusc.2020.147354

    Article  CAS  Google Scholar 

  45. Shi L, Li Z, Dao TD, Nagao T, Yang Y (2018) A synergistic interaction between isolated Au nanoparticles and oxygen vacancies in an amorphous black TiO2 nanoporous film: toward enhanced photoelectrochemical water splitting. J Mater Chem A 6:12978–12984. https://doi.org/10.1039/C8TA04621B

    Article  CAS  Google Scholar 

  46. Dall’Agnese C, Dall’Agnese Y, Anasori B, Sugimoto W, Mori S (2018) Oxidized Ti3C2MXene nanosheets for dye-sensitized solar cells. New J Chem 42:16446–16450. https://doi.org/10.1039/C8NJ03246G

    Article  CAS  Google Scholar 

  47. Kong F, He X, Liu Q, Qi X, Zheng Y, Wang R, Bai Y (2018) Improving the electrochemical properties of MXene Ti3C2 multilayer for Li-ion batteries by vacuum calcination. Electrochim Acta 265:140–150. https://doi.org/10.1016/j.electacta.2018.01.196

    Article  CAS  Google Scholar 

  48. Huang K, Li C, Meng X (2020) In-situ construction of ternary Ti3C2 MXene@TiO2/ZnIn2S4 composites for highly efficient photocatalytic hydrogen evolution. J Colloid Interface Sci 580:669–680. https://doi.org/10.1016/j.jcis.2020.07.044

    Article  CAS  Google Scholar 

  49. Huang H, Song Y, Li N, Chen D, Xu Q, Li H, He J, Lu J (2019) One-step in-situ preparation of N-doped TiO2@C derived from Ti3C2 MXene for enhanced visible-light driven photodegradation. Appl Catal B: Environ 251:154–161. https://doi.org/10.1016/j.apcatb.2019.03.066

    Article  CAS  Google Scholar 

  50. Zhao C, Yang X, Han C, Xu J (2020) Sacrificial agent-free photocatalytic oxygen evolution from water splitting over Ag3PO4/MXene hybrids. Solar RRL 4:1900434. https://doi.org/10.1002/solr.201900434

    Article  CAS  Google Scholar 

  51. Tanner R, Liang Y, Altman E (2002) Structure and chemical reactivity of adsorbed carboxylic acids on anatase TiO2 (001). Surf Sci 506:251–271. https://doi.org/10.1016/S0039-6028(02)01388-2

    Article  CAS  Google Scholar 

  52. Kong W, Zhao Y, Xuan J, Gao Z, Wang J, Tan S, Jia F, Teng Z, Sun M, Yin G (2021) Synchronous etching and W-do** for 3D CdS/ZnO/TiO2 hierarchical heterostructure photoelectrodes to significantly enhance the photoelectrochemical performance. Appl Surf Sci 537:147998. https://doi.org/10.1016/j.apsusc.2020.147998

    Article  CAS  Google Scholar 

  53. Zhuang Y, Liu Y, Meng X (2019) Fabrication of TiO2 nanofibers/MXene Ti3C2 nanocomposites for photocatalytic H2 evolution by electrostatic self-assembly. Appl Surf Sci 496:143647. https://doi.org/10.1016/j.apsusc.2019.143647

    Article  CAS  Google Scholar 

  54. Peng C, Wang H, Yu H, Peng F (2017) (111) TiO2-x /Ti3C2: Synergy of active facets, interfacial charge transfer and Ti3+ do** for enhance photocatalytic activity. Mater Res Bull 89:16–25. https://doi.org/10.1016/j.materresbull.2016.12.049

    Article  CAS  Google Scholar 

  55. Rakhi RB, Ahmed B, Hedhili MN, Anjum DH, Alshareef HN (2015) Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene electrodes for supercapacitor applications. Chem Mater 27:5314–5323. https://doi.org/10.1021/acs.chemmater.5b01623

    Article  CAS  Google Scholar 

  56. Zhang WL, Wei W, Liu W, Guan T, Tian Y, Zeng H (2019) Engineering the morphology of TiO2/carbon hybrids via oxidized Ti3C2Tx MXene and associated electrorheological activities. Chem Eng J 378:122170. https://doi.org/10.1016/j.cej.2019.122170

    Article  CAS  Google Scholar 

  57. Li B, Zhao Z, Gao F, Wang X, Qiu J (2014) Mesoporous microspheres composed of carbon-coated TiO2 nanocrystals with exposed 001 facets for improved visible light photocatalytic activity. Appl Catal B: Environ 147(958–964):964. https://doi.org/10.1016/j.apcatb.2013.10.027

    Article  CAS  Google Scholar 

  58. Ji B, Zhao W, Duan J, Fu L, Ma L, Yang Z (2020) Immobilized Ag3PO4/GO on 3D nickel foam and its photocatalytic degradation of norfloxacin antibiotic under visible light. RSC Adv 10:4427–4435. https://doi.org/10.1039/C9RA08678A

    Article  CAS  Google Scholar 

  59. Tang C, Liu E, Fan J, Hu X, Ma Y, Wan J (2015) A graphitic-C3N4-hybridized Ag3PO4 tetrahedron with reactive 111 facets to enhance the visible-light photocatalytic activity. Rsc Adv 5:91979–91987. https://doi.org/10.1039/C5RA18096A

    Article  CAS  Google Scholar 

  60. Cao S, Shen B, Tong T, Fu J, Yu J (2018) 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Adv Funct Mater 28:1800136. https://doi.org/10.1002/adfm.201800136

    Article  CAS  Google Scholar 

  61. Xu F, Meng K, Zhu B, Liu H, Xu J, Yu J (2019) Graphdiyne: a new photocatalytic CO2 reduction cocatalyst. Adv Funct Mater 29:1904256. https://doi.org/10.1002/adfm.201904256

    Article  CAS  Google Scholar 

  62. Ran J, Gao G, Li F-T, Ma T-Y, Du A, Qiao S-Z (2017) Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat Commun 8:13907. https://doi.org/10.1038/ncomms13907

    Article  CAS  Google Scholar 

  63. An X, Wang W, Wang J, Duan H, Shi J, Yu X (2018) The synergetic effects of Ti3C2 MXene and Pt as co-catalysts for highly efficient photocatalytic hydrogen evolution over g-C3N4. Phys Chem Chem Phys 20:11405–11411. https://doi.org/10.1039/C8CP01123K

    Article  CAS  Google Scholar 

  64. Hu J, Jiang X, Wu L, Xu K, Hou X, Lv Y (2011) UV-induced surface photovoltage and photoluminescence on n-Si/TiO2/TiO2: Eu for dual-channel sensing of volatile organic compounds. Anal Chem 83:6552–6558. https://doi.org/10.1021/ac2008459

    Article  CAS  Google Scholar 

  65. Su S, Guo W, Leng Y, Yi C, Ma Z (2013) Heterogeneous activation of Oxone by CoxFe3-xO4 nanocatalysts for degradation of rhodamine B. J Hazard Mater 244–245:736–742. https://doi.org/10.1016/j.jhazmat.2012.11.005

    Article  CAS  Google Scholar 

  66. Yao Y, Cai Y, Lu F, Wei F, Wang X, Wang S (2014) Magnetic recoverable MnFe2O4 and MnFe2O4-graphene hybrid as heterogeneous catalysts of peroxymonosulfate activation for efficient degradation of aqueous organic pollutants. J Hazard Mater 270:61–70. https://doi.org/10.1016/j.jhazmat.2014.01.027

    Article  CAS  Google Scholar 

  67. Chen X, Tan P, Zhou B, Dong H, Pan J, **ong X (2015) A green and facile strategy for preparation of novel and stable Cr-doped SrTiO3/g-C3N4 hybrid nanocomposites with enhanced visible light photocatalytic activity. J Alloy Compd 647:456–462. https://doi.org/10.1016/j.jallcom.2015.06.056

    Article  CAS  Google Scholar 

  68. Zhang L, Gao Y, Ding X, Yu Z, Sun L (2014) High-performance photoelectrochemical cells based on a binuclear ruthenium catalyst for visible-light-driven water oxidation. Chemsuschem 7:2801–2804. https://doi.org/10.1002/cssc.201402561

    Article  CAS  Google Scholar 

  69. Sabri M, Habibi-Yangjeh A, Chand H, Krishnan V (2020) Activation of persulfate by novel TiO2/FeOCl photocatalyst under visible light: facile synthesis and high photocatalytic performance. Sep Purif Technol 250:117268. https://doi.org/10.1016/j.seppur.2020.117268

    Article  CAS  Google Scholar 

  70. Han X, An L, Hu Y, Li Y, Hou C, Wang H, Zhang Q (2020) Ti3C2 MXene-derived carbon-doped TiO2 coupled with g-C3N4 as the visible-light photocatalysts for photocatalytic H2 generation. Appl Catal B: Environ 265:118539. https://doi.org/10.1016/j.apcatb.2019.118539

    Article  CAS  Google Scholar 

  71. Madani SS, Habibi-Yangjeh A, Asadzadeh-Khaneghah S, Chand H, Krishnan V, Zada A (2021) Integration of Bi4O5I2 nanoparticles with ZnO: impressive visible-light-induced systems for elimination of aqueous contaminants. J Taiwan Inst Chem E 119:177–186. https://doi.org/10.1016/j.jtice.2021.01.020

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (No. 11904209, 61904098), Natural Science Foundation of Shandong Province (No. ZR2019QF018), and the Higher Education Research and Development Program of Shandong Province (No. J18KA242).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangchao Yin or Bo Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Pedro Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 565 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Ren, J., Gong, Q. et al. Hierarchical Ag3PO4/TiO2@C composites derived from Ti3C2 MXene for enhanced photocatalytic activity. J Mater Sci 57, 5396–5409 (2022). https://doi.org/10.1007/s10853-022-06970-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-06970-x

Navigation