Log in

Zinc-doped hydroxyapatite and poly(propylene fumarate) nanocomposite scaffold for bone tissue engineering

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hydroxyapatite (HA) is a bioceramic material that shares similar crystal and chemical structures with inorganic components of the bone. However, HA lacks osteoinductive activity and has a brittle nature, making it challenging to apply for direct load-bearing bone applications. In this study, we used a wet chemical method to synthesize zinc-doped hydroxyapatite powders with different Zn/(Zn+Ca) molar ratios of 0, 0.025, 0.05, and 0.1. The corresponding Zn-HA was designated as HA, Zn2.5-HA, Zn5-HA, and Zn10-HA. The Zn-HA powders at 30 wt% were used to fabricate poly(propylene fumarate) (PPF)-based nanocomposite scaffolds (HA/PPF, Zn2.5-HA/PPF, Zn5-HA/PPF, and Zn10-HA/PPF). The physical properties of obtained scaffolds were examined by scanning electron microscopy, energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), and atomic force microscopy (AFM). Live/dead cell viability assay showed that these scaffolds were biocompatible and supported excellent adhesion of MC3T3-E1 preosteoblast cells. Additionally, the proliferation of cells was detected at 1, 4, and 7 days on these scaffolds. Alkaline phosphatase (ALP) activity measurement and alizarin red staining showed good osteogenic differentiation and matrix mineralization for MC3T3-E1 cells growing on these scaffolds. Taken together, the results here indicate that Zn5-HA/PPF nanocomposite scaffolds are promising scaffold material for bone tissue engineering.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Singer A, Exuzides A, Spangler L, O’Malley C, Colby C, Johnston K, Agodoa I, Baker J, Kagan R (2015) Burden of illness for osteoporotic fractures compared with other serious diseases among postmenopausal women in the United States. Mayo Clin Proc 90(1):53–62

    Article  Google Scholar 

  2. Uskokovi V (2020) Ion-doped hydroxyapatite: an impasse or the road to follow? Ceram Int 46(8):11443–11465

    Article  Google Scholar 

  3. Cho YE, Kwun IS (2018) Cellular zinc deficiency inhibits the mineralized nodule formation and downregulates bone-specific gene expression in osteoblastic MC3T3-E1 cells. J Nutr Health 51(5):379

    Article  Google Scholar 

  4. Meng G, Wu X, Yao R, He J, Wu Y, Wu F (2019) Effect of zinc substitution in hydroxyapatite coating on osteoblast and osteoclast differentiation under osteoblast/osteoclast co-culture. Regen Biomater 6(6):11

    Google Scholar 

  5. Yamaguchi M (2015) Role of zinc in bone formation and bone resorption. J Trace Elem Exp Med 11(23):119–135

    Article  Google Scholar 

  6. Li B, Liu H, Jia S (2015) Zinc enhances bone metabolism in ovariectomized rats and exerts anabolic osteoblastic/adipocytic marrow effects ex vivo. Biol Trace Elem Res 163(1–2):202–207

    Article  CAS  Google Scholar 

  7. Cruz R, Calasans-Maia J, Sartoretto S, Moraschini V, Rossi AM, Louro RS, Granjeiro JM, Calasans-Maia MD (2018) Does the incorporation of zinc into calcium phosphate improve bone repair? A systematic review. Ceram Int 44(2):1240–1249

    Article  CAS  Google Scholar 

  8. Fan Y, Dong WJ, He FM, Wang XX, Zhao SF, Yang Gl (2012) Osteoblast response to porous titanium surfaces coated with zinc-substituted hydroxyapatite. Oral Surg Oral Med Oral Pathol Oral Radiol 113(3):313–318

    Article  Google Scholar 

  9. Szcześ A, Hołysz L, Chibowski E (2017) Synthesis of hydroxyapatite for biomedical applications. Adv Colloid Interface Sci 249:321–330

    Article  Google Scholar 

  10. Yaszemski MJ, Payne RG, Hayes WC, Langer R, Mikos AG (1996) Evolution of bone transplantation: molecular, cellular and tissue strategies to engineer human bone. Biomaterials 17(2):175–185

    Article  CAS  Google Scholar 

  11. Cai Z, Wan Y, Becker ML, Long YZ, Dean D (2019) Poly(propylene fumarate)-based materials: synthesis, functionalization, properties, device fabrication and biomedical applications. Biomaterials 208:45–71

    Article  CAS  Google Scholar 

  12. Lee KW, Wang S, Yaszemski MJ, Lu L (2008) Physical properties and cellular responses to crosslinkable poly(propylene fumarate)/hydroxyapatite nanocomposites. Biomaterials 29(19):2839–2848

    Article  CAS  Google Scholar 

  13. Lee KW, Wang S, Dadsetan M, Yaszemski MJ, Lu L (2010) Enhanced cell ingrowth and proliferation through three-dimensional nanocomposite scaffolds with controlled pore structures. Biomacromol 11(3):682

    Article  CAS  Google Scholar 

  14. Li M, **ao X, Liu R, Chen C, Huang L (2008) Structural characterization of zinc-substituted hydroxyapatite prepared by hydrothermal method. J Mater Sci - Mater Med 19(2):797

    Article  CAS  Google Scholar 

  15. Liana PC, Aurélien D, Isabelle MS, Régis G, Mikael MH, Daniela P (2016) Structural and biological assessment of zinc doped hydroxyapatite nanoparticles. J Nanomater. https://doi.org/10.1155/2016/1062878

    Article  Google Scholar 

  16. Kharas GB, Kamenetsky M, Simantirakis J, Beinlich KC, Watson K (1997) Synthesis and characterization of fumarate-based polyesters for use in bioresorbable bone cement composites. J Appl Polym Sci 66(6):1123–1137

    Article  CAS  Google Scholar 

  17. Wang S, Lu L, Gruetzmacher JA, Currier BL, Yaszemski MJ (2006) Synthesis and characterizations of biodegradable and crosslinkable poly(epsilon-caprolactone fumarate), poly(ethylene glycol fumarate), and their amphiphilic copolymer. Biomaterials 27(6):832–841

    Article  CAS  Google Scholar 

  18. Park S, Terzic A (2010) Quaternary structure of KATP channel SUR2A nucleotide binding domains resolved by synchrotron radiation X-ray scattering. J Struct Biol 169(2):243–251

    Article  CAS  Google Scholar 

  19. Liu X, Miller AL 2nd, Park S, Waletzki BE, Zhou Z, Terzic A, Lu L (2017) Functionalized carbon nanotube and graphene oxide embedded electrically conductive hydrogel synergistically stimulates nerve cell differentiation. ACS Appl Mater Interfaces 9(17):14677–14690

    Article  CAS  Google Scholar 

  20. Jeong J, Kim JH, Shim JH, Hwang NS, Heo CY (2019) Bioactive calcium phosphate materials and applications in bone regeneration. Biomater Res 23(1):1–11

    Article  CAS  Google Scholar 

  21. Eliaz N, Sridhar TM, Kamachi Mudali U, Raj B (2013) Electrochemical and electrophoretic deposition of hydroxyapatite for orthopaedic applications. Surf Eng 21(3):238–242

    Article  Google Scholar 

  22. Thian ES, Konishi T, Kawanobe Y, Lim PN, Choong C, Ho B, Aizawa M (2013) Zinc-substituted hydroxyapatite: a biomaterial with enhanced bioactivity and antibacterial properties. J Mater Sci - Mater Med 24(2):437–445

    Article  CAS  Google Scholar 

  23. Wang H, Wu G, Zhang J, Zhou K, Yin B, Su X, Qiu G, Yang G, Zhang X, Zhou G (2016) Osteogenic effect of controlled released rhBMP-2 in 3D printed porous hydroxyapatite scaffold. Colloids Surf, B 141:491–498

    Article  CAS  Google Scholar 

  24. Nandi SK, Kundu B, Mukherjee J, Mahato A, Datta S, Balla VK (2015) Converted marine coral hydroxyapatite implants with growth factors: in vivo bone regeneration. Mater Sci Eng, C 49:816–823

    Article  CAS  Google Scholar 

  25. Yu X, Khalil A, Dang PN, Alsberg E, Murphy WL (2014) Multilayered inorganic microparticles for tunable dual growth factor delivery. Adv Func Mater 24(20):3082–3093

    Article  CAS  Google Scholar 

  26. Farokhi M, Mottaghitalab F, Ai J, Shokrgozar MA (2013) Sustained release of platelet-derived growth factor and vascular endothelial growth factor from silk/calcium phosphate/PLGA based nanocomposite scaffold. Int J Pharm 454(1):216–225

    Article  CAS  Google Scholar 

  27. Martínez-Vázquez FJ, Caba As MV, Paris JL, Lozano D, Vallet-Regí M (2015) Fabrication of novel Si-doped hydroxyapatite/gelatine scaffolds by rapid prototy** for drug delivery and bone regeneration. Acta Biomater 15:200–209

    Article  Google Scholar 

  28. Ghorbani FM, Kaffashi B, Shokrollahi P, Seyedjafari E, Ardeshirylajimi A (2015) PCL/chitosan/Zn-doped nHA electrospun nanocomposite scaffold promotes adipose derived stem cells adhesion and proliferation. Carbohyd Polym 118:133–142

    Article  CAS  Google Scholar 

  29. Landi E, Logroscino G, Proietti L, Tampieri A, Sandri M, Sprio S (2008) Biomimetic Mg-substituted hydroxyapatite: from synthesis to in vivo behaviour. J Mater Sci - Mater Med 19(1):239–247

    Article  CAS  Google Scholar 

  30. Li J, Liu X, Park S, Miller AL, Lu L (2018) Strontium-substituted hydroxyapatite stimulates osteogenesis on poly(propylene fumarate) nanocomposite scaffolds. J Biomed Mater Res Part A 107(1):631–642

    Google Scholar 

  31. Kulanthaivel S, Mishra U, Agarwal T, Giri S, Pal K, Pramanik K, Banerjee I (2015) Improving the osteogenic and angiogenic properties of synthetic hydroxyapatite by dual do** of bivalent cobalt and magnesium ion. Ceram Int 41(9):11323–11333

    Article  CAS  Google Scholar 

  32. Ito A, Otsuka M, Kawamura H, Ikeuchi M, Ohgushi H, Sogo Y, Ichinose N (2005) Zinc-containing tricalcium phosphate and related materials for promoting bone formation. Curr Appl Phys 5(5):402–406

    Article  Google Scholar 

  33. O’Neill E, Awale G, Daneshmandi L, Umerah O, Lo K (2018) The roles of ions on bone regeneration. Drug Discov Today 23(4):879–890

    Article  CAS  Google Scholar 

  34. Shen C, James SA, De JMD, Turney TW, Wright P, Feltis BN (2013) Relating cytotoxicity, zinc ions, and reactive oxygen in ZnO nanoparticle-exposed human immune cells. Toxicol Sci 1:120–130

    Article  Google Scholar 

  35. Ramesh N, Moratti SC, Dias GJ (2018) Hydroxyapatite-polymer biocomposites for bone regeneration: a review of current trends. J Biomed Mater Res B Appl Biomater 106(5):2046–2057

    Article  CAS  Google Scholar 

  36. Peter SJ, Lu L, Kim DJ, Mikos AG (2000) Marrow stromal osteoblast function on a poly(propylene fumarate)/beta-tricalcium phosphate biodegradable orthopaedic composite. Biomaterials 21(12):1207–1213

    Article  CAS  Google Scholar 

  37. Olthof MGL, Kempen DHR, Herrick JL, Yaszemski MJ, Dhert WJA, Lu L (2018) Effect of different sustained bone morphogenetic protein-2 release kinetics on bone formation in poly(propylene fumarate) scaffolds. J Biomed Mater Res B Appl Biomater 106(2):477–487

    Article  CAS  Google Scholar 

  38. Becker J, Lu L, Runge MB, Zeng H, Yaszemski MJ, Dadsetan M (2015) Nanocomposite bone scaffolds based on biodegradable polymers and hydroxyapatite. J Biomed Mater Res, Part A 103(8):2549–2557

    Article  CAS  Google Scholar 

  39. Mcbeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS (2004) Cell Shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6(4):483–495

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health Grant No. R01 AR75037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lichun Lu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Liu, X., Gaihre, B. et al. Zinc-doped hydroxyapatite and poly(propylene fumarate) nanocomposite scaffold for bone tissue engineering. J Mater Sci 57, 5998–6012 (2022). https://doi.org/10.1007/s10853-022-06966-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-06966-7

Navigation