Log in

Facile one-pot synthesis of nanocoral-like cerium-activated cobalt selenide: a highly efficient electrocatalyst for oxygen evolution reaction

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The development of hydrogen production via environment-friendly and efficient electrochemical water splitting technology leans heavily on the exploitation of highly active and durable oxygen evolution reaction (OER) electrocatalysts. Herein, nanocoral-like cerium-activated cobalt selenide (Ce-CoSe2) nanocomposites to enhance the OER catalytic activity have been successfully prepared by one-pot hydrothermal route via simply altering the cerium content. Owing to the ingenious introduction of cerium, as-prepared Ce-CoSe2 electrode displays remarkable OER performance in comparison with CoSe2. The nanocoral-like Ce-CoSe2 catalyst prepared under optimal condition just needs low overpotential of 276 and 398 mV at 10 and 50 mA cm−2, respectively. Additionally, it attains the current density of 255 mA cm−2 at the potential of 2.0 V vs. RHE, and shows long-term stability during OER. This work offers a simple and feasible pathway for the design and construct of metal dichalcogenides for green and renewable hydrogen production by electrocatalytic water splitting.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

References

  1. Liu HH, Lei J, Yang S, Qin F, Cui L, Kong Y, Zheng X, Duan T, Zhu WK, He R (2021) Boosting the oxygen evolution activity over cobalt nitride nanosheets through optimizing the electronic configuration. Appl Catal B Environ 286:119894. https://doi.org/10.1016/j.apcatb.2021.119894

    Article  CAS  Google Scholar 

  2. Wu C, Liu D, Li H, Li JH (2018) Molybdenum carbide-decorated metallic cobalt@nitrogen-doped carbon polyhedrons for enhanced electrocatalytic hydrogen evolution. Small 14:1704227. https://doi.org/10.1002/smll.201704227

    Article  CAS  Google Scholar 

  3. Gao YF, Tong ZM, Fan XJ (2021) 3D Ta3N5 thin film confined-growth Co nanoparticles for efficient bifunction electrolyzed water. Electrochim Acta 390:138797. https://doi.org/10.1016/j.electacta.2021.138797

    Article  CAS  Google Scholar 

  4. Zhang JJ, Wang M, Xu SP, Feng YC (2019) Hydrogen and methane mixture from biomass gasification coupled with catalytic tar reforming, methanation and adsorption enhanced reforming. Fuel Process Technol 192:147–153. https://doi.org/10.1016/j.fuproc.2019.04.023

    Article  CAS  Google Scholar 

  5. Ou W, Pan JQ, Liu YY, Li S, Li HL, Zhao WJ, Wang JJ, Song CS, Zheng YY, Li CR (2020) Two-dimensional ultrathin MoS2-modified black Ti3+-TiO2 nanotubes for enhanced photocatalytic water splitting hydrogen production. J Energy Chem 44:188–194. https://doi.org/10.1016/j.jechem.2019.08.020

    Article  Google Scholar 

  6. Wang S, He P, **e ZW, Jia LP, He MQ, Zhang XQ, Dong FQ, Liu HH, Zhang Y, Li CX (2019) Tunable nanocotton-like amorphous ternary Ni-Co-B: a highly efficient catalyst for enhanced oxygen evolution reaction. Electrochim Acta 296:644–652. https://doi.org/10.1016/j.electacta.2018.11.099

    Article  CAS  Google Scholar 

  7. Cao Y, Wang T, Li X, Zhang LC, Luo YL, Zhang F, Asiri AM, Hu JM, Liu Q, Sun X (2021) A hierarchical CuO@NiCo layered double hydroxide core-shell nanoarray as an efficient electrocatalyst for the oxygen evolution reaction. Inorg Chem Front 8:3049–3054. https://doi.org/10.1039/d1qi00124h

    Article  CAS  Google Scholar 

  8. Kong FH, Sun LP, Huo LH, Zhao H (2019) In-situ electrochemical self-tuning of amorphous nickel molybdenum phosphate to crystal Ni-rich compound for enhanced overall water splitting. J Power Sources 430:218–227. https://doi.org/10.1016/j.jpowsour.2019.05.037

    Article  CAS  Google Scholar 

  9. Wang XJ, Wang S, Chen SX, He P, Xu YW, Jia LP, Yang DM, He XC, Deng HQ, Jia B, Zhang H, Liu HT (2020) Facile one-pot synthesis of binder-free nano/micro structured dendritic cobalt activated nickel sulfide: a highly efficient electrocatalyst for oxygen evolution reaction. Int J Hydrogen Energy 45:19304–19312. https://doi.org/10.1016/j.ijhydene.2020.05.105

    Article  CAS  Google Scholar 

  10. Wu W, Liu J, Chen G, Chen Y, Xu CL (2019) Thin porous nanosheets of NiFe layered-double hydroxides toward a highly efficient electrocatalyst for water oxidation. Int J Hydrogen Energy 45:1948–1958. https://doi.org/10.1016/j.ijhydene.2019.11.108

    Article  CAS  Google Scholar 

  11. Jiang JB, Zhu LY, Sun YX, Chen YK, Chen HT, Han S, Lin HL (2019) Fe2O3 nanocatalysts on N-doped carbon nanomaterial for highly efficient electrochemical hydrogen evolution in alkaline. J Power Sources 426:74–83. https://doi.org/10.1016/j.jpowsour.2019.04.022

    Article  CAS  Google Scholar 

  12. Zhang WH, Tang YH, Yu LM, Yu XY (2020) Activating the alkaline hydrogen evolution performance of Mo-incorporated Ni(OH)2 by plasma-induced heterostructure. Appl Catal B Environ 260:118154. https://doi.org/10.1016/j.apcatb.2019.118154

    Article  CAS  Google Scholar 

  13. Liu DN, Liu TT, Zhang LX, Qu FL, Du G, Asiri AM, Sun XP (2017) High-performance urea electrolysis towards less energy-intensive electrochemical hydrogen production using a bifunctional catalyst electrode. J Mater Chem A 5:3208–3213. https://doi.org/10.1039/C6TA11127K

    Article  CAS  Google Scholar 

  14. Chunduri A, Gupta S, Bapat O, Bhide A, Fernandes R, Patel MK, Bambole V, Miotello A, Patel N (2019) A unique amorphous cobalt-phosphide-boride bifunctional electrocatalyst for enhanced alkaline water-splitting. Appl Catal B Environ 259:118051. https://doi.org/10.1016/j.apcatb.2019.118051

    Article  CAS  Google Scholar 

  15. Liu HH, Zeng S, He P, Dong FQ, He MQ, Zhang Y, Wang S, Li CX, Liu MZ, Jia LP (2019) Samarium oxide modified Ni-Co nanosheets based three-dimensional honeycomb film on nickel foam: a highly efficient electrocatalyst for hydrogen evolution reaction. Electrochim Acta 299:405–414. https://doi.org/10.1016/j.electacta.2018.12.169

    Article  CAS  Google Scholar 

  16. Zhao Y, Bai J, Wu XR, Chen P, ** PJ, Yao HC, Chen Y (2019) Atomically ultrathin RhCo alloy nanosheet aggregates for efficient water electrolysis in broad pH range. J Mater Chem A 7:16437–16446. https://doi.org/10.1039/c9ta05334d

    Article  CAS  Google Scholar 

  17. Wu C, Yang YJ, Dong D, Zhang YH, Li JH (2017) In situ coupling of CoP polyhedrons and carbon nanotubes as highly efficient hydrogen evolution reaction electrocatalyst. Small 13:1602873. https://doi.org/10.1002/smll.201602873

    Article  CAS  Google Scholar 

  18. Hunter BM, Gray HB, Müller AM (2016) Earth-abundant heterogeneous water oxidation catalysts. Chem Rev 116:14120–14136. https://doi.org/10.1021/acs.chemrev.6b00788

    Article  CAS  Google Scholar 

  19. Xu SR, Zhao HT, Li TS, Liang J, Lu SY, Chen G, Gao SY, Asiri AM, Wu Q, Sun X (2020) Iron-based phosphides as electrocatalysts for the hydrogen evolution reaction: recent advances and future prospects. J Mater Chem A 8:19729–19745. https://doi.org/10.1039/d0ta05628f

    Article  CAS  Google Scholar 

  20. Li JW, Xu WM, Zhou D, Luo JX, Zhang DW, Xu PM, Yuan DS (2018) Synthesis of 3D flower-like cobalt nickel phosphate grown on Ni foam as an excellent electrocatalyst for the oxygen evolution reaction. J Mater Sci 53:2077–2086. https://doi.org/10.1007/s10853-017-1631-3

    Article  CAS  Google Scholar 

  21. Jia Y, Li YN, Wang ZM, Li FM, ** PJ, Li SN, Chen Y (2021) Porous cobalt carbonate hydroxide nanospheres towards oxygen evolution reaction. Chem Eng J 417:128066. https://doi.org/10.1016/j.cej.2020.128066

    Article  CAS  Google Scholar 

  22. Xu HJ, Wang BK, Shan CF, ** PX, Liu WS, Tang Y (2018) Ce-doped NiFe-layered double hydroxide ultrathin nanosheets/nanocarbon hierarchical nanocomposite as an efficient oxygen evolution catalyst. ACS Appl Mater Interfaces 10:6336–6345. https://doi.org/10.1021/acsami.7b17939

    Article  CAS  Google Scholar 

  23. Meng CQ, Cao Y, Luo YL, Zhang F, Kong QQ, Alshehri AA, Alzahrani KA, Li TS, Liu Q, Sun XP (2021) A Ni-MOF nanosheet array for efficient oxygen evolution electrocatalysis in alkaline media. Inorg Chem Front 8:3007–3011. https://doi.org/10.1039/d1qi00345c

    Article  CAS  Google Scholar 

  24. Wang S, He P, Jia LP, He MQ, Zhang TH, Dong FQ, Liu MZ, Liu HH, Zhang Y, Li CX, Gao J, Bian L (2019) Nanocoral-like composite of nickel selenide nanoparticles anchored on two-dimensional multi-layered graphitic carbon nitride: a highly efficient electrocatalyst for oxygen evolution reaction. Appl Catal B Environ 243:463–469. https://doi.org/10.1016/j.apcatb.2018.10.071

    Article  CAS  Google Scholar 

  25. Kang Z, Guo HJ, Wu J, Sun X, Zhang Z, Liao QL, Zhang SC, Si HN, Wu PW, Wang L, Zhang Y (2019) Engineering an earth-abundant element-based bifunctional electrocatalyst for highly efficient and durable overall water splitting. Adv Funct Mater 29:1807031. https://doi.org/10.1002/adfm.201807031

    Article  CAS  Google Scholar 

  26. Dong J, Lu Y, Tian XX, Zhang FQ, Chen S, Yan WJ, He HL, Wang YS, Zhang YB, Qin Y, Sui ML, Zhang XM, Fan XJ (2020) Genuine active species generated from Fe3N nanotube by synergistic CoNi do** for boosted oxygen evolution catalysis. Small 16:2003824. https://doi.org/10.1002/smll.202003824

    Article  CAS  Google Scholar 

  27. Ma XQ, Zou L, Zhao WX (2018) Tailoring hollow microflower-shaped CoSe2 anodes in sodium ion batteries with high cycling stability. Chem Commun 54:10507–10510. https://doi.org/10.1039/c8cc04426k

    Article  CAS  Google Scholar 

  28. Zare A, Bayat A, Saievar-Iranizad E, Naffakh-Moosavy H (2020) One step preparation of Fe doped CoSe2 supported on nickel foam by facile electrodeposition method as a highly efficient oxygen evolution reaction electrocatalyst. J Electroanal Chem 878:114595. https://doi.org/10.1016/j.jelechem.2020.114595

    Article  CAS  Google Scholar 

  29. Li J, Liu GY, Liu BB, Min ZY, Qian D, Jiang JB, Li JH (2018) Fe-doped CoSe2 nanoparticles encapsulated in N-doped bamboo-like carbon nanotubes as an efficient electrocatalyst for oxygen evolution reaction. Electrochim Acta 265:577–585. https://doi.org/10.1016/j.electacta.2018.01.211

    Article  CAS  Google Scholar 

  30. Wang GX, Huang J, Chen GL, Chen W, Song CS, Li MC, Wang XQ, Chen DL, Zhu H, Zhang XH, Ostrikov KK (2020) In-situ-engineered 3D Cu3Se2@CoSe2-NiSe2 nanostructures for highly efficient electrocatalytic water splitting. ACS Sustain Chem Eng 8:17215–17224. https://doi.org/10.1021/acssuschemeng.0c05985

    Article  CAS  Google Scholar 

  31. ** Y, Huang S, Yue X, Du H, Shen PK (2018) Mo-and Fe-modified Ni(OH)2/NiOOH nanosheets as highly active and stable electrocatalysts for oxygen evolution reaction. ACS Catal 8:2359–2363. https://doi.org/10.1021/acscatal.7b04226

    Article  CAS  Google Scholar 

  32. Du C, Men Y, Hei XZ, Yu JH, Cheng GZ, Luo W (2018) Mo-doped Ni3S2 nanowires as high-performance electrocatalysts for overall water splitting. ChemElectroChem 5:2564–2570. https://doi.org/10.1002/celc.201800630

    Article  CAS  Google Scholar 

  33. Wang S, Xue WD, Fang Y, Li YQ, Yan LL, Wang WJ, Zhao R (2020) Bismuth activated succulent-like binary metal sulfide heterostructure as a binder-free electrocatalyst for enhanced oxygen evolution reaction. J Colloid Interface Sci 573:150–157. https://doi.org/10.1016/j.jcis.2020.03.098

    Article  CAS  Google Scholar 

  34. Zhang R, Ren X, Hao S, Ge RX, Liu ZA, Asiri AM, Chen L, Zhang QJ, Sun XP (2018) Selective phosphidation: an effective strategy toward CoP/CeO2 interface engineering for superior alkaline hydrogen evolution electrocatalysis. J Mater Chem A 6:1985–1990. https://doi.org/10.1039/c7ta10237b

    Article  CAS  Google Scholar 

  35. Sun W, Zaman WQ, Ma CL, Liao JJ, Ge CJ, Yang J (2020) Cerium surface-engineered iridium oxides for enhanced oxygen evolution reaction activity and stability. ACS Appl Energy Mater 3:4432–4440. https://doi.org/10.1021/acsaem.0c00139

    Article  CAS  Google Scholar 

  36. Pan LL, Wang QQ, Li YD, Zhang CJ (2020) Amorphous cobalt-cerium binary metal oxides as high performance electrocatalyst for oxygen evolution reaction. J Catal 384:14–21. https://doi.org/10.1016/j.jcat.2020.02.005

    Article  CAS  Google Scholar 

  37. Xu HJ, Cao J, Shan CF, Wang BK, ** PX, Liu WS, Tang Y (2018) MOF-derived hollow CoS decorated with CeOx nanoparticles for boosting oxygen evolution reaction electrocatalysis. Angew Chemie Int Ed 57:8654–8658. https://doi.org/10.1002/anie.201804673

    Article  CAS  Google Scholar 

  38. Jadhav HS, Roy A, Desalegan BZ, Seo JG (2019) An advanced and highly efficient Ce assisted NiFe-LDH electrocatalyst for overall water splitting. Sustain Energy Fuels 4:312–323. https://doi.org/10.1039/c9se00700h

    Article  CAS  Google Scholar 

  39. Li JJ, Zou SB, Liu XD, Lu Y, Dong DH (2020) Electronically modulated CoP by Ce do** as a highly efficient electrocatalyst for water splitting. ACS Sustain Chem Eng 8:10009–10016. https://doi.org/10.1021/acssuschemeng.0c01193

    Article  CAS  Google Scholar 

  40. Liang J, Liu Q, Li TS, Luo YL, Lu SY, Shi XF, Zhang F, Asiri AM, Sun XP (2021) Magnetron sputtering enabled sustainable synthesis of nanomaterials for energy electrocatalysis. Green Chem 23:2834–2867. https://doi.org/10.1039/d0gc03994b

    Article  CAS  Google Scholar 

  41. Chen ZW, Wang WW, Huang SS, Ning P, Wu Y, Gao CY, Le TT, Zai JT, Jiang Y, Hu ZJ, Qian XF (2020) Well-defined CoSe2@MoSe2 hollow heterostructured nanocubes with enhanced dissociation kinetics for overall water splitting. Nanoscale 12:326–335. https://doi.org/10.1039/c9nr08751f

    Article  CAS  Google Scholar 

  42. Zhang XJ, He MQ, He P, Liu HT, Bai HM, Chen JC, He SY, Zhang XQ, Dong FQ, Chen Y (2017) Hierarchical structured Sm2O3 modified CuO nanoflowers as electrode materials for high performance supercapacitors. Appl Surf Sci 426:933–943. https://doi.org/10.1016/j.apsusc.2017.07.236

    Article  CAS  Google Scholar 

  43. Cui Y, Xue Y, Zhang R, Zhang J, Li XA, Zhu XB (2019) Vanadium-cobalt oxyhydroxide shows ultralow overpotential for the oxygen evolution reaction. J Mater Chem A 7:21911–21917. https://doi.org/10.1039/c9ta07918a

    Article  CAS  Google Scholar 

  44. Wang K, ** D, Zhou CJ, Shi ZQ, **a HY, Liu GW, Qiao GJ (2015) CoSe2 necklace-like nanowires supported by carbon fiber paper: a 3D integrated electrode for the hydrogen evolution reaction. J Mater Chem A 3:9415–9420. https://doi.org/10.1039/c5ta01143d

    Article  CAS  Google Scholar 

  45. Wang XJ, Zhou LH, Yang TT, Gao J, He P, Jia LP, Dong FQ, Jia B, Zhang H (2020) Facile one-step synthesis of tunable nanochain-like Fe–Mo–B: a highly efficient and stable catalyst for oxygen evolution reaction. J Alloys Compd 822:153517. https://doi.org/10.1016/j.jallcom.2019.153517

    Article  CAS  Google Scholar 

  46. Guo YX, Yao ZY, Shang CS, Wang EK (2017) Amorphous Co2B grown on CoSe2 nanosheets as a hybrid catalyst for efficient overall water splitting in alkaline medium. ACS Appl Mater Interfaces 9:39312–39317. https://doi.org/10.1021/acsami.7b10605

    Article  CAS  Google Scholar 

  47. Li XY, Zhang R, Luo YS, Liu Q, Lu SY, Chen G, Gao SY, Chen S, Sun XP (2020) A cobalt-phosphorus nanoparticle decorated N-doped carbon nanosheet array for efficient and durable hydrogen evolution at alkaline pH. Sustain Energy Fuels 4:3884–3887. https://doi.org/10.1039/d0se00240b

    Article  CAS  Google Scholar 

  48. Li Z, Jiang ZZ, Zhu WY, He CC, Wang P, Wang X, Li TX, Tian L (2020) Facile preparation of CoSe2 nano-vesicle derived from ZIF-67 and their application for efficient water oxidation. Appl Surf Sci 504:144368. https://doi.org/10.1016/j.apsusc.2019.144368

    Article  CAS  Google Scholar 

  49. Liu TT, Liu DN, Qu FL, Wang DX, Zhang L, Ge RX, Hao S, Ma YJ, Du G, Asiri AM, Chen L, Sun XP (2017) Enhanced electrocatalysis for energy-efficient hydrogen production over CoP catalyst with nonelectroactive Zn as a promoter. Adv Energy Mater 7:1700020. https://doi.org/10.1002/aenm.201700020

    Article  CAS  Google Scholar 

  50. Tian L, Wang K, Wo HX, Pang XL, Zhai XH, Zhuang WC, Li TX, Chen Y (2019) Bundle-shaped cobalt–nickel selenides as advanced electrocatalysts for water oxidation. Int J Hydrogen Energy 44:2868–2876. https://doi.org/10.1016/j.ijhydene.2018.12.074

    Article  CAS  Google Scholar 

  51. Wang YH, Hao SY, Liu XN, Wang QQ, Su ZW, Lei LC, Zhang XW (2020) Ce-doped IrO2 electrocatalysts with enhanced performance for water oxidation in acidic media. ACS Appl Mater Interfaces 12:37006–37012. https://doi.org/10.1021/acsami.0c00389

    Article  CAS  Google Scholar 

  52. Hao JH, Luo W, Yang WS, Li LH, Shi WD (2020) Origin of the enhanced oxygen evolution reaction activity and stability of a nitrogen and cerium co-doped CoS2 electrocatalyst. J Mater Chem A 8:22694–22702. https://doi.org/10.1039/d0ta07163c

    Article  CAS  Google Scholar 

  53. Dinari M, Allami H, Momeni MM (2020) A high-performance electrode based on Ce-doped nickel-cobalt layered double hydroxide growth on carbon nanotubes for efficient oxygen evolution. J Electroanal Chem 877:114643. https://doi.org/10.1016/j.jelechem.2020.114643

    Article  CAS  Google Scholar 

  54. Zhou LH, He P, Yang TT, Chen SX, He QH, Dong FQ, Jia LP, Zhang H, Jia B, He XC (2020) Nanocoral-like NiSe2 modified with CeO2: a highly active and durable electrocatalyst for hydrogen evolution in alkaline solution. Int J Hydrogen Energy 45:28682–28695. https://doi.org/10.1016/j.ijhydene.2020.07.201

    Article  CAS  Google Scholar 

  55. Lan QY, Lin YP, Li YM, Liu D (2018) MOF-derived, CeOx-modified CoP/carbon composites for oxygen evolution and hydrogen evolution reactions. J Mater Sci 53:12123–12131. https://doi.org/10.1007/s10853-018-2519-6

    Article  CAS  Google Scholar 

  56. Sohrabi S, Dehghanpour S, Ghalkhani M (2018) A cobalt porphyrin-based metal organic framework/multi-walled carbon nanotube composite electrocatalyst for oxygen reduction and evolution reactions. J Mater Sci 53:3624–3639. https://doi.org/10.1007/s10853-017-1768-0

    Article  CAS  Google Scholar 

  57. He CY, Bo T, Wang BT, Tao JZ (2019) RGO induced one-dimensional bimetallic carbide nanorods: an efficient and pH-universal hydrogen evolution reaction electrocatalyst. Nano Energy 62:85–93. https://doi.org/10.1016/j.nanoen.2019.05.009

    Article  CAS  Google Scholar 

  58. Zhou PC, **ao F, He QH, Chen SX, Wang XJ, He P, He XC, Zhang H, Jia B, Xu YW, Jia LP (2021) Bi12NiO19 micro-sheets grown on graphene oxide: temperature-dependent facile synthesis and excellent electrochemical behavior for supercapacitor electrode. J Electroanal Chem 884:115075. https://doi.org/10.1016/j.jelechem.2021.115075

    Article  CAS  Google Scholar 

  59. Zhang XJ, He MQ, He P, Li CX, Liu HH, Zhang XQ, Ma YJ (2018) Ultrafine nano-network structured bacterial cellulose as reductant and bridging ligands to fabricate ultrathin K-birnessite type MnO2 nanosheets for supercapacitors. Appl Surf Sci 433:419–427. https://doi.org/10.1016/j.apsusc.2017.10.053

    Article  CAS  Google Scholar 

  60. Liu HH, He P, Wang S, Gao J, Zhou LH, Li CX, Zhang Y, Yang DM, He MQ, Jia LP, Dong FQ, Liu HT (2019) Facile one-step fabrication of bimetallic Co–Ni–P hollow nanospheres anchored on reduced graphene oxide as highly efficient electrocatalyst for hydrogen evolution reaction. Int J Hydrogen Energy 44:24140–24150. https://doi.org/10.1016/j.ijhydene.2019.07.139

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Sichuan Provincial College Students Innovation and Entrepreneurship Training Program (Grant No. S202010619008).

Author information

Authors and Affiliations

Authors

Contributions

QH involved in investigation, writing—original draft and writing—review and editing. XW involved in investigation and writing—review and editing. PZ involved in investigation and writing—review and editing. QG involved in investigation and writing—review and editing. TF involved in project administration. SC involved in investigation and writing—review and editing. FX involved in investigation and writing—review and editing. PY involved in formal analysis. PH involved in project administration and writing—review and editing. LJ involved in formal analysis. DY involved in project administration.

Corresponding author

Correspondence to ** He.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships in this paper.

Additional information

Handling Editor: Joshua Tong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Q., Wang, X., Zhou, P. et al. Facile one-pot synthesis of nanocoral-like cerium-activated cobalt selenide: a highly efficient electrocatalyst for oxygen evolution reaction. J Mater Sci 56, 20037–20049 (2021). https://doi.org/10.1007/s10853-021-06544-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06544-3

Navigation