Log in

Theoretical study of the strain influence on lead-free bismuth-based halide perovskites

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The existence of bio-accumulative lead hinders the commercialization of optoelectronic applications of Pb-based halide perovskites (PVKs). Therefore, researchers are seeking for comparative lead-free PVKs. Owing to the identical electronic configuration with Pb, Bi-based PVKs are proved to be one of the most promising candidates. Because strain is widely existed altering materials’ characteristics, it is crucial to study the influences of strain on the Bi-based PVKs. Our theoretical work investigates the strain influences on two kinds of Bi-based PVKs, i.e., Cs3Bi2Br9, and Cs2BiAgBr6. It is observed that both the tensile and compressive strains effectively change the crystal structures and the bandgaps, i.e., enlargement under tensile strain while shrinkage under compressive strain. Simultanously, the absorption spectra of these PVKs are also discussed. The strain study of Bi-based PVKs will offer guidance to the further development of lead-free PVKs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Liu Y, Yang Z, Liu SF (2018) Recent Progress in single-crystalline perovskite research including crystal preparation, property evaluation, and applications. Adv Sci (Weinh) 5(1):1700471. https://doi.org/10.1002/advs.201700471

    Article  CAS  Google Scholar 

  2. **ao Z, Song Z, Yan Y (2019) From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives. Adv Mater 31(47):1803792. https://doi.org/10.1002/adma.201803792

    Article  CAS  Google Scholar 

  3. Chatterjee S, Pal AJ (2018) Influence of metal substitution on hybrid halide perovskites: towards lead-free perovskite solar cells. J Mater Chem A 6:3793–3823. https://doi.org/10.1039/c7ta09943f

    Article  CAS  Google Scholar 

  4. Attique S, Ali N, Ali S et al (2020) A potential checkmate to lead: bismuth in organometal halide perovskites, structure, properties, and applications. Adv Sci (Weinh) 7(13):1903143. https://doi.org/10.1002/advs.201903143

    Article  CAS  Google Scholar 

  5. Zhao X-G, Yang D, Ren J-C, Sun Y, **ao Z, Zhang L (2018) Rational design of halide double perovskites for optoelectronic applications. Joule 2:1662–1673. https://doi.org/10.1016/j.joule.2018.06.017

    Article  CAS  Google Scholar 

  6. Guo L, Xu G, Tang G, Fang D, Hong J (2020) Structural stability and optoelectronic properties of tetragonal MAPbI3 under strain. Nanotechnology 31(22):225204. https://doi.org/10.1088/1361-6528/ab7679

    Article  CAS  Google Scholar 

  7. Martin LW, Chu YH, Ramesh R (2010) Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films. Mater Sci Eng R Rep 68:89–133. https://doi.org/10.1016/j.mser.2010.03.001

    Article  CAS  Google Scholar 

  8. Amorim B, Cortijo A, de Juan F et al (2016) Novel effects of strains in graphene and other two dimensional materials. Phys Rep 617:1–54. https://doi.org/10.1016/j.physrep.2015.12.006

    Article  CAS  Google Scholar 

  9. Chen Y, Lei Y, Li Y et al (2020) Strain engineering and epitaxial stabilization of halide perovskites. Nature 577:209–215. https://doi.org/10.1038/s41586-019-1868-x

    Article  CAS  Google Scholar 

  10. Al-Shami A, Lakhal M, Hamedoun M et al (2018) Tuning the optical and electrical properties of orthorhombic hybrid perovskite CH3NH3PbI3 by first-principles simulations: strain-engineering. Sol Energy Mater Sol Cells 180:266–270. https://doi.org/10.1016/j.solmat.2017.06.047

    Article  CAS  Google Scholar 

  11. Wang S, Gong Z, Li G et al (2020) The strain effects in 2D hybrid organic-inorganic perovskite microplates: bandgap, anisotropy and stability. Nanoscale 12:6644–6650. https://doi.org/10.1039/d0nr00657b

    Article  CAS  Google Scholar 

  12. Tu Q, Spanopoulos I, Hao S et al (2019) Probing Strain-induced band gap modulation in 2D hybrid organic-inorganic perovskites. ACS Energy Lett 4:796–802. https://doi.org/10.1021/acsenergylett.9b00120

    Article  CAS  Google Scholar 

  13. **a M, Yuan J-H, Luo J et al (2020) Two-dimensional perovskites as sensitive strain sensors. J Mater Chem C 8:3814–3820. https://doi.org/10.1039/c9tc06437k

    Article  CAS  Google Scholar 

  14. Soni A, Bhamu KC, Sahariya J (2020) Investigating effect of strain on electronic and optical properties of lead free double perovskite Cs2AgInCl6 solar cell compound: a first principle calculation. J Alloy Compd. https://doi.org/10.1016/j.jallcom.2019.152758

    Article  Google Scholar 

  15. Yang E, Luo X (2020) Theoretical pressure-tuning bandgaps of double perovskites A2(BB’) X6 for photo-voltaics. Sol Energy 207:165–172. https://doi.org/10.1016/j.solener.2020.05.104

    Article  CAS  Google Scholar 

  16. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  17. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979. https://doi.org/10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  18. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186. https://doi.org/10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  19. Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276. https://doi.org/10.1107/S0021889811038970

    Article  CAS  Google Scholar 

  20. Nelson RD, Santra K, Wang Y, Hadi A, Petrich JW, Panthani MG (2018) Synthesis and optical properties of ordered-vacancy perovskite cesium bismuth halide nanocrystals. Chem Commun (Camb) 54:3640–3643. https://doi.org/10.1039/c7cc07223f

    Article  CAS  Google Scholar 

  21. Lou Y, Fang M, Chen J, Zhao Y (2018) Formation of highly luminescent cesium bismuth halide perovskite quantum dots tuned by anion exchange. Chem Commun (Camb) 54:3779–3782. https://doi.org/10.1039/c8cc01110a

    Article  CAS  Google Scholar 

  22. Gao M, Zhang C, Lian L et al (2019) Controlled synthesis and photostability of blue emitting Cs3Bi2Br 9 perovskite nanocrystals by employing weak polar solvents at room temperature. J Mater Chem C 7:3688–3695. https://doi.org/10.1039/c9tc00400a

    Article  CAS  Google Scholar 

  23. Luo T, Wei J (2020) First principles study of electronic and optical properties of inorganic and lead-free perovskite: Cs3Bi2X9 (X: Cl, Br, I). Mater Chem Phys. https://doi.org/10.1016/j.matchemphys.2020.123374

    Article  Google Scholar 

  24. Luo Z, Li Q, Zhang L et al (2020) 0D Cs3 Cu2 X5 (X = I, Br, and Cl) nanocrystals: colloidal syntheses and optical properties. Small 16(3):1905226. https://doi.org/10.1002/smll.201905226

    Article  CAS  Google Scholar 

  25. Zhu D, Zaffalon ML, Pinchetti V et al (2020) Bright Blue emitting Cu-doped Cs2ZnCl4 colloidal nanocrystals. Chem Mater 32:5897–5903. https://doi.org/10.1021/acs.chemmater.0c02017

    Article  CAS  Google Scholar 

  26. Li Q, Yin L, Chen Z et al (2019) High Pressure structural and optical properties of two-dimensional hybrid halide perovskite (CH3NH3)3Bi2Br 9. Inorg Chem 58:1621–1626. https://doi.org/10.1021/acs.inorgchem.8b03190

    Article  CAS  Google Scholar 

  27. Slavney AH, Hu T, Lindenberg AM, Karunadasa HI (2016) A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J Am Chem Soc 138:2138–2141. https://doi.org/10.1021/jacs.5b13294

    Article  CAS  Google Scholar 

  28. Jacobs R, Luo G, Morgan D (2019) Materials Discovery of stable and nontoxic halide perovskite materials for high-efficiency solar cells. Adv Func Mater. https://doi.org/10.1002/adfm.201804354

    Article  Google Scholar 

  29. Li Q, Wang Y, Pan W et al (2017) High-Pressure band-gap engineering in lead-free Cs2 AgBiBr 6 double perovskite. Angew Chem Int Ed Engl 56:15969–16189. https://doi.org/10.1002/anie.201708684

    Article  CAS  Google Scholar 

  30. Amin B, Ahmad I, Maqbool M, Goumri-Said S, Ahmad R (2011) Ab initio study of the bandgap engineering of Al1−xGaxN for optoelectronic applications. J Appl Phys 109(2):023109. https://doi.org/10.1063/1.3531996

    Article  CAS  Google Scholar 

  31. Fox M (2001) Optical Properties of Solids. Oxford University Press, New York

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. U1737109, 11933006) and the Key Research and Development Program of Zhejiang Province, China (No. 2020C01120).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huizhen Wu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Handling Editor: Yaroslava Yingling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Bi, G., Ali, N. et al. Theoretical study of the strain influence on lead-free bismuth-based halide perovskites. J Mater Sci 56, 11377–11385 (2021). https://doi.org/10.1007/s10853-021-06025-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06025-7

Navigation