Log in

Inter-granular fracture behaviour in bicrystalline boron nitride nanosheets using atomistic and continuum mechanics-based approaches

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hexagonal boron nitride nanosheets (BNNS) are among the emerging nanomaterials with potential application in water purification, nanocomposites and ion separation. In this article, atomistic followed by sequential multiscale models in the framework of finite element was developed to investigate the inter-granular fracture properties of bicrystalline BNNS. Atomistic simulations were performed in the environment of classical mechanics-based molecular dynamics to capture the crack tip behaviour, and for develo** traction separation law for bicrystalline BNNS. Moreover, the fracture toughness of bicrystalline BNNS is significantly dependent on the misorientation angle, GB configuration in terms of homoelemental bonds (B–B or N–N) and orientation of loading. The average crack propagation velocity was calculated at atomistic scale and was made to compare with the value predicted using linear elastodynamic theory. The average crack tip stresses predicted from atomistic simulations were found to be in good agreement with values calculated from the continuum model developed using the principle of sequential multiscale model. This work provides a systematic study of inter-granular fracture in bicrystalline BNNS, providing valuable information to develop future applications of 2D nanosheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

References

  1. Corso M, Auwarter W, Muntwiler M, Tamai A, Greber T, Osterwalder J (2004) Boron nitride nanomesh. Science 303:217

    Article  CAS  Google Scholar 

  2. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci 102:10451–10453

    Article  CAS  Google Scholar 

  3. Sharma BB, Parashar A (2020) A review on thermo-mechanical properties of bi-crystalline and polycrystalline 2D nanomaterials. Crit Rev Solid State Mater Sci 45:134–170

    Article  CAS  Google Scholar 

  4. Sharma BB, Parashar A (2019) Mechanical and fracture behaviour of hydroxyl functionalized h-BN nanosheets. J Mater Sci 55:3228–3242. https://doi.org/10.1007/s10853-019-04163-7

    Article  CAS  Google Scholar 

  5. Mortazavi B, Pereira LFC, Jiang JW, Rabczuk T (2015) Modelling heat conduction in polycrystalline hexagonal boron-nitride films. Sci Rep 5:1–11

    Article  Google Scholar 

  6. Sharma BB, Parashar A (2019) Atomistic simulations to study the effect of grain boundaries and hydrogen functionalization on the fracture toughness of bi-crystalline h-BN nanosheets. Phys Chem Chem Phys 21:13116–13125

    Article  CAS  Google Scholar 

  7. Verma PK, Sharma BB, Chaurasia A, Parashar A (2020) Inter-granular fracture toughness of bi-crystalline graphene nanosheets. Diam Relat Mater 102:107667

    Article  CAS  Google Scholar 

  8. Kumar R, Parashar A (2016) Atomistic modeling of BN nanofillers for mechanical and thermal properties: a review. Nanoscale 8:22–49

    Article  Google Scholar 

  9. Watanabe K, Taniguchi T, Kanda H (2004) Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat Mater 3:404–409. https://doi.org/10.1038/nmat1134

    Article  CAS  Google Scholar 

  10. Chen X, Wu P, Rousseas M, Okawa D, Gartner Z (2009) boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with proteins and cells. J Am Chem Soc 131:890–891

    Article  CAS  Google Scholar 

  11. Sharma BB, Parashar A (2019) Atomistic simulations to study the effect of water molecules on the mechanical behavior of functionalized and non-functionalized boron nitride nanosheets. Comput Mater Sci 169:109092. https://doi.org/10.1016/j.commatsci.2019.109092

    Article  CAS  Google Scholar 

  12. Sharma SS, Sharma BB, Parashar A (2019) Mechanical and fracture behavior of water submerged graphene. J Appl Phys 125:215107. https://doi.org/10.1063/1.5088884

    Article  CAS  Google Scholar 

  13. Sharma SS, Sharma BB, Parashar A (2019) Defect formation dynamics in dry and water submerged graphene nanosheets. Mater Res Express 6:107667

    Google Scholar 

  14. Sharma BB, Parashar A (2021) Fracture behaviour of pristine and defective form of water submerged h-BN nanosheets. J Phys D Appl Phys 54:035306. https://doi.org/10.1088/1361-6463/abbc39

    Article  CAS  Google Scholar 

  15. Srivastava R, Kommu A, Sinha N, Singh JK (2017) Removal of arsenic ions using hexagonal boron nitride and graphene nanosheets: a molecular dynamics study. Mol Simul 43:985–996

    Article  CAS  Google Scholar 

  16. Chaurasia A, Verma A, Parashar A, Mulik RS (2019) experimental and computational studies to analyze the effect of h-BN nanosheets on mechanical behavior of h-BN/polyethylene nanocomposites. J Phys Chem C 123:20059–20070

    Article  CAS  Google Scholar 

  17. Chaurasia A, Parashar A, Mulik RS (2020) Effect of hexagonal boron nitride nanoplatelet on crystal nucleation, mechanical behavior, and thermal stability of high-density polyethylene-based nanocomposites. Macromol Mater Eng 305:2000248. https://doi.org/10.1002/mame.202000248

    Article  CAS  Google Scholar 

  18. Song L, Ci L, Lu H, Sorokin PB, ** C, Ni J, Kvashnin AG, Kvashnin DG, Lou J, Yakobson BI, Ajayan PM (2010) Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett 10:3209–3215

    Article  CAS  Google Scholar 

  19. Kubota Y, Watanabe K, Tsuda O, Taniguchi T (2007) Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 317:932–934

    Article  CAS  Google Scholar 

  20. Golberg D, Bando Y, Huang Y, Terao T, Mitome M, Tang C, Zhi C (2010) Boron nitride nanotubes and nanosheets. ACS Nano 4:2979–2993

    Article  CAS  Google Scholar 

  21. Liu Y, Zou X, Yakobson BI (2012) Dislocations and grain boundaries in two-dimensional boron nitride. ACS Nano 6:7053–7058

    Article  CAS  Google Scholar 

  22. Gibb AL, Alem N, Chen J, Erickson KJ, Ciston J, Gautam A, Linck M, Zettl A (2013) Atomic resolution imaging of grain boundary defects in monolayer chemical vapor deposition-grown hexagonal boron nitride. J Am Chem Soc 135:6758–6761

    Article  CAS  Google Scholar 

  23. Cretu O, Lin YC, Suenaga K (2014) Evidence for active atomic defects in monolayer hexagonal boron nitride: a new mechanism of plasticity in two-dimensional materials. Nano Lett 14:1064–1068

    Article  CAS  Google Scholar 

  24. Li Q, Zou X, Liu M, Sun J, Gao Y, Qi Y, Zhou X, Yakobson BI, Zhang Y, Liu Z (2015) Grain boundary structures and electronic properties of hexagonal boron nitride on Cu (111). Nano Lett 15:5804–5810

    Article  CAS  Google Scholar 

  25. Ding N, Wu C-ML, Li H (2014) The effect of grain boundaries on the mechanical properties and failure behavior of hexagonal boron nitride sheets. Phys Chem Chem Phys 16:23716–23722

    Article  CAS  Google Scholar 

  26. Abadi R, Uma RP, Izadifar M, Rabczuk T (2016) The effect of temperature and topological defects on fracture strength of grain boundaries in single-layer polycrystalline boron-nitride nanosheet. Comput Mater Sci 123:277–286

    Article  CAS  Google Scholar 

  27. Ding Q, Ding N, Liu L, Li N, Wu CML (2018) Investigation on mechanical performances of grain boundaries in hexagonal boron nitride sheets. Int J Mech Sci 149:262–272

    Article  Google Scholar 

  28. Lee JD, Li J, Zhang Z, Wang L (2018) Sequential and concurrent multiscale modelling of multiphysics: from atoms to continuum, in book micromechanics and nanomechanics of composite solids. Springer, Berlin. https://doi.org/10.1007/978-3-319-52794-9_1

    Book  Google Scholar 

  29. Sadeghirad A, Su N, Liu F (2015) Mechanical modeling of graphene using the three-layer-mesh bridging domain method. Comput Methods Appl Mech Eng 294:278–298

    Article  Google Scholar 

  30. DiMarco CS, Robillos T, Hone J, Kysar JW (2018) Mechanisms and criteria for failure in polycrystalline graphene. Int J Solids Struct 143:232–244

    Article  CAS  Google Scholar 

  31. Verma PK, Parashar A (2020) Sequential multiscale model to study crack tip behavior in bi-crystalline graphene. J Appl Phys 127:225103. https://doi.org/10.1063/5.0010194

    Article  CAS  Google Scholar 

  32. Guin L, Raphanel JL, Kysar JW (2016) Atomistically derived cohesive zone model of intergranular fracture in polycrystalline graphene. J Appl Phys 119:245107. https://doi.org/10.1063/1.4954682

    Article  CAS  Google Scholar 

  33. Ken Gall MF, Horstemeyer MV, Schilfgaarde MIB (2000) Atomistic simulations on the tensile debondingof an aluminum–silicon interface. J Mech Phys Solids 48:2183–2212

    Article  Google Scholar 

  34. Jiang WG, Wu Y, Qin QH, Li DS, Liu XB, Fu MF (2018) A molecular dynamics based cohesive zone model for predicting interfacial properties between graphene coating and aluminum. Comput Mater Sci 151:117–123

    Article  CAS  Google Scholar 

  35. Albe K, Möller W, Heinig K (1997) Computer simulation and boron nitride. Radiat Eff Defects Solids 141:85–97

    Article  CAS  Google Scholar 

  36. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19. https://doi.org/10.1006/jcph.1995.1039

    Article  CAS  Google Scholar 

  37. Xu N, Guo JG, Cui Z (2016) The influence of tilt grain boundaries on the mechanical properties of bicrystalline graphene nanoribbons. Phys E Low-Dimens Syst Nanostruct 84:168–174

    Article  CAS  Google Scholar 

  38. Han T, Luo Y, Wang C (2014) Effects of temperature and strain rate on the mechanical properties of hexagonal boron nitride nanosheets. J Phys D Appl Phys 47:025303

    Article  Google Scholar 

  39. Jung GS, Qin Z, Buehler MJ (2015) Molecular mechanics of polycrystalline graphene with enhanced fracture toughness. Extrem Mech Lett 2:52–59

    Article  Google Scholar 

  40. Hillerborg A, Modéer M, Petersson P-E (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res 6:773–781

    Article  Google Scholar 

  41. Turon A, Dávila CG, Camanho PP, Costa J (2007) An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng Fract Mech 74:1665–1682

    Article  Google Scholar 

  42. Clausius R (1870) XVI. On a mechanical theorem applicable to heat. Lond Edinb Dublin Philos Mag J Sci 40:122–127

    Article  Google Scholar 

  43. Dewapriya M, Arachchige M (2012) Molecular dynamics study of effects of geometric defects on the mechanical properties of grapheme. MASc Thesis The University of British Columbia, Canada. Doi: https://doi.org/10.14288/1.0072708

  44. Wei X, **ao S, Li F, Tang DM, Chen Q, Bando Y, Golberg D (2015) Comparative fracture toughness of multilayer graphenes and boronitrenes. Nano Lett 15:689–694

    Article  CAS  Google Scholar 

  45. Sharma BB, Parashar A (2020) Mechanical strength of a nanoporous bicrystalline h-BN nanomembrane in a water submerged state. Phys Chem Chem Phys 22:20453–20465

    Article  CAS  Google Scholar 

  46. Abraham FF, Gao H (2000) How fast can cracks propagate? Phys Rev Lett 84:3113–3116

    Article  CAS  Google Scholar 

  47. Bao H, Huang Y, Yang Z, Sun Y, Bai Y, Miao Y, Chu PK, Xu K, Ma F (2018) Molecular dynamics simulation of nanocrack propagation in single-layer MoS2 nanosheets. J Phys Chem C 122:1351–1360

    Article  CAS  Google Scholar 

  48. Buehler MJ, Gao H (2006) Dynamical fracture instabilities due to local hyperelasticity at crack tips. Nature 439:307–310

    Article  CAS  Google Scholar 

  49. Anderson TL (2005) Fracture mechanics: fundamentals and applications. CRC Press, Boca Raton, FL. https://doi.org/10.1201/9781420058215

    Book  Google Scholar 

  50. Meng F, Chen C, Song J (2017) Lattice trap** and crack decohesion in grapheme. Carbon N. Y 116:33–39

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors appreciatively acknowledge the financial support received from the Council of Scientific and Industrial Research (Grant No. CSR-1251-MID), India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avinash Parashar.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Handling Editor: Avinash Dongare.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4267 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, B.B., Parashar, A. Inter-granular fracture behaviour in bicrystalline boron nitride nanosheets using atomistic and continuum mechanics-based approaches. J Mater Sci 56, 6235–6250 (2021). https://doi.org/10.1007/s10853-020-05697-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05697-x

Navigation