Log in

Magnetic aligned sulfonated carbon nanotube/Nafion composite membranes with anisotropic mechanical and proton conductive properties

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nafion composite membranes with various amounts of sulfonated multi-walled carbon nanotubes (Su-CNTs) were prepared either in or without a strong magnetic field. Interestingly, it is found that being recast in a strong magnetic field, the tensile strength at break and proton conductivity of Su-CNTs/Nafion composite membranes parallel to the magnetic field direction were higher than those perpendicular to magnetic field. Remarkably, such anisotropic mechanical property and proton conductivity of Su-CNTs/Nafion composite membranes strongly depend on water uptake and temperature, in particular the content of Su-CNTs. Quite a different dependence of the proton conductivity of the composite membranes on Su-CNT content, relative humidities and temperatures is well explained for the anisotropic proton conductivity of the Su-CNTs/Nafion membrane recast in a strong magnetic field, which is attributed to the preferential proton transporting along ionic water channels mainly coalesced by the orientated Su-CNTs at a specific water uptake. For Nafion composite membranes with 5 wt.% Su-CNTs, the proton conductivity along the direction of treating magnetic field approaches to 0.216 S/cm, which is \(\sim\) 46% higher than that perpendicular to the magnetic field at 95 \(^{\circ }\)C. The present work provides a deep insight of the humidity and temperature dependence of proton conductivity of Su-CNTs/Nafion composite membranes and a new strategy for fabrication proton exchange membranes with high proton conductivity as well as good mechanical property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Srinivasan S (2006) Fuel cells: from fundamentals to applications. Springer, New york

    Google Scholar 

  2. Chi HP, Chang HL, Guiver MD, Lee YM (2011) Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs). Prog Polym Sci 36:1443–1498

    Article  Google Scholar 

  3. Kusoglu A, Weber AZ (2017) New insights into perfluorinated sulfonic-acid ionomers. Chem Rev 117:987–1104

    Article  CAS  Google Scholar 

  4. Bakangura E, Wu L, Ge L, Yang Z, Xu T (2016) Mixed matrix proton exchange membranes for fuel cells: state of the art and perspectives. Prog Polym Sci 57:103–152

    Article  CAS  Google Scholar 

  5. Li J, Yang X, Tang H, Pan M (2010) Durable and high performance Nafion membrane prepared through high-temperature annealing methodology. J Membr Sci 361:38–42

    Article  CAS  Google Scholar 

  6. Steele BCH, Heinzel A (2001) Materials for fuel-cell technologies. Nature 414:345–352

    Article  CAS  Google Scholar 

  7. Wu L, Zhang Z, Ran J, Zhou D, Li C, Xu T (2013) Advances in proton-exchange membranes for fuel cells: an overview on proton conductive channels (PCCs). Phys Chem Chem Phys 15:4870

    Article  CAS  Google Scholar 

  8. Mauritz KA, Moore RB (2004) State of understanding of nafion. Chem Rev 104:4535–4586

    Article  CAS  Google Scholar 

  9. Mohamed HFM, Ito K, Kobayashi Y, Takimoto N, Takeoka Y, Ohira A (2008) Free volume and permeabilities of O\(_2\) and H\(_2\) in Nafion membranes for polymer electrolyte fuel cells. Polymer 49:3091–3097

    Article  CAS  Google Scholar 

  10. Zhang H, Shen PK (2012) Advances in the high performance polymer electrolyte membranes for fuel cells. Chem Soc Rev 41:2382–2394

    Article  CAS  Google Scholar 

  11. Gierke TD, Munn GE, Wilson FC (1981) The morphology in nafion\(\dagger\) perfluorinated membrane products, as determined by wide- and small-angle x-ray studies. J Polym Sci Part B Polym Phys 19:1687–1704

    Article  CAS  Google Scholar 

  12. Schmidt-Rohr K, Chen Q (2008) Parallel cylindrical water nanochannels in nafion fuel cell membranes. Nat Mater 7(1):75–83

    Article  CAS  Google Scholar 

  13. Rikukawa M, Sanui K (2000) Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Prog Polym Sci 25:1463–1502

    Article  CAS  Google Scholar 

  14. Karimi MB, Mohammadi F, Hooshyari K (2019) Recent approaches to improve Nafion performance for fuel cell applications: a review. Int J Hydrogen Energy 44:28919–28938

    Article  CAS  Google Scholar 

  15. Lee SW, Chen JC, Wu JA, Chen KH (2017) Synthesis and properties of Poly(ether sulfone)s with clustered sulfonic groups for pemfc applications under various Relative Humidity. ACS Appl Mater Interfaces 9(11):9805–9814

    Article  CAS  Google Scholar 

  16. Wang C, Shin DW, Lee SY, Kang NR, Robertson GP, Lee YM, Guiver MD (2012) A clustered sulfonated poly(ether Sulfone) Based on a new fluorene-based bisphenol monomer. J Mater Chem 22:25093–25101

    Article  CAS  Google Scholar 

  17. Yang XB, Meng LH, Sui XL, Wang ZB (2019) High proton conductivity polybenzimidazole proton exchange membrane based on phosphotungstic acid-anchored nano-Kevlar fibers. J Mat Sci 54:1640–1653

    Article  CAS  Google Scholar 

  18. Wang L, Liu Z, Liu Y, Wang L (2019) Crosslinked polybenzimidazole containing branching structure with no sacrifice of effective N-H sites: Towards high-performance high-temperature proton exchange membranes for fuel cells. J Membr Sci. 583:110–117

    Article  CAS  Google Scholar 

  19. Hasani-Sadrabadi MM, Dashtimoghadam E, Sarikhani K, Majedi FS, Khanbabaei G (2010) Electrochemical investigation of sulfonated poly(ether ether ketone)/clay nanocomposite membranes for moderate temperature fuel cell applications. J Power Sources 195:2450–2456

    Article  CAS  Google Scholar 

  20. Kim SW, Choi SY, Rhee HW (2018) A novel sPEEK nanocomposite membrane with well-controlled sPOSS aggregation in tunable nanochannels for fast proton conduction. Nanoscale 10:18217–18227

    Article  CAS  Google Scholar 

  21. Li CC, Zhang YF, Liu XP, Dong JM, Wang JY, Yang ZH, Cheng HS (2018) Cross-linked fully aromatic sulfonated polyamide as a highly efficiency polymeric filler in SPEEK membrane for high methanol concentration direct methanol fuel cells. J Mat Sci 53:5501–5510

    Article  CAS  Google Scholar 

  22. Parnian MJ, Rowshanzamir S, Prasad AK, Advani SG (2018) High durability sulfonated poly (ether etherketone)-ceria nanocomposite membranes for proton exchange membrane fuel cell applications. J Membr Sci. 556:12–22

    Article  CAS  Google Scholar 

  23. Sung KA, Cho KY, Kim WK, Park JK (2010) Sulfonated polyimide membrane coated with crosslinkable layer for direct methanol fuel cell. Electrochimi Acta 55:995–1000

    Article  CAS  Google Scholar 

  24. Yin Y, Du Q, Qin Y, Zhou Y, Okamoto K (2011) Sulfonated polyimides with flexible aliphatic side chains for polymer electrolyte fuel cells. J Membr Sci 367:211–219

    Article  CAS  Google Scholar 

  25. Sun YM, Wu TC, Lee HC, Jung GB, Guiver MD, Gao Y, Liu YL, Lai JY (2005) Sulfonated poly(phthalazinone ether ketone) for proton exchange membranes in direct methanol fuel cell. J Membr Sci 265:108

    Article  CAS  Google Scholar 

  26. Gao Y, Robertson GP, Guiver MD, Jian X (2003) Synthesis and characterization of sulfonated poly(phthalazinone ether ketone) for proton exchange membrane materials. J. Polym. Sci. Polym Chem Ed 41:497–507

    Article  CAS  Google Scholar 

  27. Yun S, Im H, Heo Y, Kim J (2011) Crosslinked sulfonated poly(vinyl alcohol)/sulfonated multi-walled carbon nanotubes nanocomposite membranes for direct methanol fuel cells. J Membr Sci 380:208–215

    Article  CAS  Google Scholar 

  28. Gomaa MM, Hugenschmidt C, Dickmann M, Abdel-Hady EE, Mohamed HFM, Abdel-Hamed MO (2018) Crosslinked pva/ssa proton exchange membranes: correlation between physiochemical properties and free volume determined by positron annihilation spectroscopy. Phys Chem Chem Phys 20(44):28287–28299

    Article  CAS  Google Scholar 

  29. Wang Z, Tang H, Pan M (2011) Self-assembly of durable Nafion/TiO2 nanowire electrolyte membranes for elevated-temperature PEM fuel cells. J Membr Sci 369:250–257

    Article  CAS  Google Scholar 

  30. Li Y, Shi Y, Mehio N, Tan M, Wang Z, Hu X, Chen G, Dai S, ** X (2016) More sustainable electricity generation in hot and dry fuel cells with a novel hybrid membrane of Nafion/nano-silica/hydroxyl ionic liquid. Appl Energy 175:451–8

    Article  CAS  Google Scholar 

  31. Amiinu IS, Li W, Wang G, Tu Z, Tang H, Pan M, Zhan H (2015) Toward anhydrous proton conductivity based on imidazole functionalized mesoporous silica/nafion composite membranes. Electrochim Acta 160:185–194

    Article  CAS  Google Scholar 

  32. Yin C, Li J, Zhou Y, Zhang H, Fang P, He C (2018) Phase Separation and Development of Proton Transport Pathways in Metal Oxide Nanoparticle/Nafion Composite Membranes during water uptake. J Phys Chem C 122:9710–9717

    Article  CAS  Google Scholar 

  33. Tang H, Pan M (2008) Synthesis and Characterization of a Self-Assembled Nafion/Silica Nanocomposite Membrane for Polymer Electrolyte Membrane fuel cells. J Phys Chem C 112(30):11556–11568

    Article  CAS  Google Scholar 

  34. Wang L, Deng N, Wang G, Ju J, Wang M, Cheng B, Kang W (2020) Construction of interpenetrating transport channels and compatible interfaces via a zeolitic imidazolate framework Bridge’ for nanofibrous hybrid pems with enhanced proton conduction and methanol resistance. ACS Sustainable Chem Eng 8:12976–12989

    Article  CAS  Google Scholar 

  35. Donnadio A, Narducci R, Casciola M, Marmottini F, D’Amato R, Jazestani M, Chiniforoshan H, Costantino F (2017) Mixed membrane matrices based on Nafion/UiO-66/SO\(_3\)H-UiO-66 Nano-MOFs: revealing the effect of crystal size, sulfonation, and filler loading on the mechanical and conductivity properties. ACS Appl Mater Interfaces 9:42239–42246

    Article  CAS  Google Scholar 

  36. Yang L, Tang B, Wu P (2015) Metal-organic framework-graphene oxide composites: a facile method to highly improve the proton conductivity of PEMs operated under low humidity. J Mater Chem A 3:15838–15842

    Article  CAS  Google Scholar 

  37. Yin C, He C, Liu Q, **ong B, Zhang X, Qian L, Li J, Zhou Y (2019) Free volume, gas permeation, and proton conductivity in MIL-101-SO\(_3\)H/Nafion composite membranes. Phys Chem Chem Phys 21:25982

    Article  CAS  Google Scholar 

  38. Rao Z, Feng K, Tang B, Wu P (2017) Construction of well interconnected metal-organic framework structure for effectively promoting proton conductivity of proton exchange membrane. J Membr Sci 533:160–170

    Article  CAS  Google Scholar 

  39. Deng R, Han w, Yeung kL, (2019) Confined PFSA/MOF composite membranes in fuel cells for promoted water management and performance. Catal Today 331:12–17

    Article  CAS  Google Scholar 

  40. Yin Y, Li Z, Yang X, Cao L, Wang C, Zhang B, Wu H, Jiang Z (2016) Enhanced proton conductivity of Nafion composite membrane by incorporating phosphoric acid-loaded covalent organic framework. J Power Sources 332:265–273

    Article  CAS  Google Scholar 

  41. Prapainainar P, Pattanapisutkun N, Prapainainar C, Kongkachuichay P (2019) Incorporating graphene oxide to improve the performance of Nafion-mordenite composite membranes for a direct methanol fuel cell. Int J Hydrog Energy 44(1):362–378

    Article  CAS  Google Scholar 

  42. Chien HC, Tsai LD, Huang CP, Kang CY, Lin JN, Chang FC (2013) Sulfonated graphene oxide/Nafion composite membranes for high-performance direct methanol fuel cells. Int J Hydrog Energy 38:379–380

    Article  Google Scholar 

  43. Feng K, Tang B, Wu PY (2013) Evaporating graphene oxide sheets (GOSs) for rolled up goss and its applications in proton exchange membrane fuel cell. ACS Appl Mater Interfaces 5:1481–1488

    Article  CAS  Google Scholar 

  44. Jia W, Wu P (2019) Stable functionalized graphene oxide-cellulose nanofiber solid electrolytes with long-range 1D/2D ionic nanochannels. J Mater Chem A 7:20871–20877

    Article  CAS  Google Scholar 

  45. Kannan R, Kakade BA, Pillai VK (2008) Polymer electrolyte fuel cells using nafion-based composite membranes with functionalized carbon nanotubes. angew. Chem Int Ed 47:2653–2656

    Article  CAS  Google Scholar 

  46. Liu YL, Su YH, Chang CM, Suryani Wang DM, Lai JY (2010) Preparation and applications of Nafion-functionalized multiwalled carbon nanotubes for proton exchange membrane fuel cells. J Mater Chem 20:4409–4416

    Article  CAS  Google Scholar 

  47. Yin C, Li J, Zhou Y, Zhang H, Fang P, He C (2018) Enhancement in proton conductivity and thermal stability in nafion membranes induced by incorporation of sulfonated carbon nanotubes. ACS Appl Mater Interfaces 10:14026–14035

    Article  CAS  Google Scholar 

  48. Chai Z, Wang C, Zhang H, Doherty CM, Ladewing BP, Hill AJ, Wang H (2010) Nafion-carbon nanocomposite membranes prepared using hydrothermal carbonization for proton-exchange-membrane fuel cells. Adv Funct Mater 20(24):4394–4399

    Article  CAS  Google Scholar 

  49. Yin C, **ong B, Liu Q, Li J, Qian L, Zhou Y, He C (2019) Lateral-aligned sulfonated carbon-nanotubes/Nafion composite membranes with high proton conductivity and improved mechanical properties. J Membr Sci. 591:117356

    Article  CAS  Google Scholar 

  50. Vinothkannan M, Hariprasad R, Ramakrishnan S, Kim AR, Yoo DJ (2019) Potential bifunctional filler (CeO2-ACNTs) for nafion matrix toward extended electrochemical power density and durability in proton-exchange membrane fuel cells operating at reduced relative humidity. ACS Sustainable Chem Eng 7:12847–12857

    Article  CAS  Google Scholar 

  51. Thomassin JM, Kollar J, Caldarella G, Germain A, Jérôme R, Detrembleur C (2007) Beneficial effect of carbon nanotubes on the performances of Nafion membranes in fuel cell applications. J Membr Sci 303:252–257

    Article  CAS  Google Scholar 

  52. Chen WF, Wu JS, Kuo PL (2008) Poly (oxyalkylene) diamine-functionalized carbon Nanotube/Perfluorosulfonated polymer composites: synthesis, water state, and conductivity. Chem Mater 20:5756–5767

    Article  CAS  Google Scholar 

  53. Hasani-Sadrabadi MM, Dashtimoghadam E, Majedi FS, Moaddel H, Bertsch A, Renaud P (2013) Superacid-doped polybenzimidazole-decorated carbon nanotubes: a novel high-performance proton exchange nanocomposite membrane. Nanoscale 5:11710–11717

    Article  CAS  Google Scholar 

  54. Liu D, Yates MZ (2009) Electric field processing to control the structure of Poly(Vinylidene Fluoride) composite proton conducting membranes. J Membr Sci 326(2):539–548

    Article  CAS  Google Scholar 

  55. Zhao S, Ren J, Wang Y, Zhang J (2013) Electric field processing to control the structure of titanium oxide/sulfonated poly (ether ether ketone) hybrid proton exchange membranes. J Membr Sci. 437:65–71

    Article  CAS  Google Scholar 

  56. Zhang X, Zhang Y, Nie L, Liu X, Chang L (2012) Modification of Nafion membrane by Pd-impregnation via electric field. J Power Sources 216:526–529

    Article  CAS  Google Scholar 

  57. Tang J, Yuan W, Wang J, Tang J, Li H, Zhang Y (2012) Perfluorosulfonate ionomer membranes with improved throughplane proton conductivity fabricated under magnetic field. J Membr Sci 423:267–274

    Article  Google Scholar 

  58. Hasanabadi N, Ghaffarian SR, Hasani-Sadrabadi MM (2011) Magnetic field aligned nanocomposite proton exchange membranes based on sulfonated poly (ether sulfone) and Fe\(_2\)O\(_3\) nanoparticles for direct methanol fuel cell application. Int J Hydrog Energy 36:15323–15332

    Article  CAS  Google Scholar 

  59. Hasani-Sadrabadi MM, Majedi FS, Coullerez G, Dashtimoghadam E, VanDersarl JJ, Bertsch A, Moaddel H, Jacob KI, Renaud P (2014) Magnetically aligned nanodomains: application in high-performance ion conductive membranes. ACS Appl Mater Interfaces 6:7099–7107

    Article  CAS  Google Scholar 

  60. Brijmohan SB, Shaw MT (2007) Magnetic ion-exchange nanoparticles and their application in proton exchange membranes. J Membr Sci 303:64–71

    Article  CAS  Google Scholar 

  61. Hyun J, Doo G, Yuk S, Lee DH, Lee D, Choi S, Kwen J, Kang H, Tenne R, Lee S, Kim HT (2020) Magnetic field-induced through-plane alignment of the proton highway in a proton exchange membrane. ACS Appl Energy Mater 3:4619–4628

    Article  CAS  Google Scholar 

  62. Liu X, Li Y, Xue J, Zhu W, Zhang J, Yin Y, Qin Y, Jiao K, Du Q, Cheng B, Zhuang X, Li J, Guiver MD (2019) Magnetic field alignment of stable proton-conducting channels in an electrolyte membrane. Nat Commun 10:842

    Article  CAS  Google Scholar 

  63. Chauvet O, Forro L, Bacsa W et al (1995) Magnetic anisotropies of aligned carbon nanotubes. Phys Rev B Condens Matter 52(52):6963–6966

    Article  Google Scholar 

  64. Fujiwara M, Oki E, Hamada M, Tanimoto Y, Mukouda I, Shimomura Y (2001) Magnetic orientation and magnetic properties of a single carbon nanotube. J Phys Chem A 105(18):4383–4386

    Article  CAS  Google Scholar 

  65. Choi ES, Brooks JS, Eaton DL, Al-Haik MS, Hussaini MY, Garmestani H, Li D, Dahmen K (2003) Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing. J Appl Phys 94:6034–6039

    Article  CAS  Google Scholar 

  66. Kimura T, Ago H, Tobita M, Ohshima S, Yumura M (2002) Polymer composites of carbon nanotubes aligned by a magnetic field. Adv Mater 14:1380–1383

    Article  CAS  Google Scholar 

  67. Takahashi T, Yonetake K, Koyama K, Kikuchi T (2003) Polycarbonate crystallization by vapor-grown carbon fiber with and without magnetic field. Macromol Rapid Commun 24:763–767

    Article  CAS  Google Scholar 

  68. Haibat J, Ceneviva S, Spencer MP, Kwok F, STrivedi S, Mohney SE, Yamamoto N, (2017) Preliminary demonstration of energy-efficient fabrication of aligned CNT-polymer nanocomposites using magnetic fields. Compos Sci Technol 152:27–35

    Article  CAS  Google Scholar 

  69. Li B, Dong S, Wu X, Wang C, Wang X, Fang J (2017) Anisotropic thermal property of magnetically oriented carbon nanotube/graphene polymer composites. Compos Sci Technol 147:52–61

    Article  CAS  Google Scholar 

  70. Shi D, He P, Zhao P, Guo FF, Wang F, Huth C, Chaud X, Bud’ko SL, Lian J (2011) Magnetic alignment of Ni/Co-coated carbon nanotubes in polystyrene composites. Composites Part B: Engineering 42:1532–1538

    Article  Google Scholar 

  71. Yin C, Wang L, Li J, Zhou Y, Zhang H, Fang P, He C (2017) Positron annihilation characteristics, water uptake and proton conductivity of composite Nafion membranes. Phys Chem Chem Phys 19:15953–15961

    Article  CAS  Google Scholar 

  72. Yeager HL, Steck A (1981) Cation and water diffusion in nafion ion exchange membranes: influence of polymer structure. J Electrochem Soc 128(9):1880–1884

    Article  CAS  Google Scholar 

  73. Agmon N (1995) The Grotthuss mechanism. Chem Phys Lett 244:456–462

    Article  CAS  Google Scholar 

  74. Asgari M, Nikazar M, Molla-abbasi P, Hasani-Sadrabadi M (2013) Nafion/histidine functionalized carbon nanotube:High-performance fuel cell membranes. Int J Hydrogen Energy 38:5894–5902

    Article  CAS  Google Scholar 

  75. Zarrin H, Higgins D, Yu J, Chen Z, Fowler M (2011) Functionalized graphene oxide nanocomposite membrane for low humidity and high temperature proton exchange membrane fuel cells. J phys chem c 115(42):20774–20781

    Article  CAS  Google Scholar 

  76. Zeng J, He B, Lamb K, Marco RD, Shen PK, Jiang SP (2013) Anhydrous phosphoric acid functionalized sintered mesoporous silica nanocomposite proton exchange membranes for fuel cells. ACS Appl Mater Interfaces 5:11240–11248

    Article  CAS  Google Scholar 

  77. Sundar S, Jang W, Lee C, Shul Y, Han H (2005) Crosslinked sulfonated polyimide networks as polymer electrolyte membranes in fuel cells. J Polym Sci B: Polym Phys 43:2370–2379

    Article  CAS  Google Scholar 

  78. Fujiwara M, Fukui M, Tanimoto Y (1999) Magnetic orientation of benzophenone crystals in fields up to 80.0 KOe. J Phys Chem B 103:2627–2630

    Article  CAS  Google Scholar 

  79. Laidler KJ (1984) The development of the Arrhenius equation. J Chem Educ 61:494

    Article  CAS  Google Scholar 

  80. Yin C, Wang Z, Luo Y, Li J, Zhou Y, Zhang X, Zhang H, Fang P, He C (2018) Thermal annealing on free volumes, crystallinity and proton conductivity of Nafion membranes. J Phys Chem Solids 120:71–78

    Article  CAS  Google Scholar 

  81. Stauffer D (1985) An introduction to percolation theory. Taylor and Fansis, London

    Book  Google Scholar 

Download references

Acknowledgements

The work is supported by the National Natural Science Foundation of China (NSFC) (Nos. 11875209, 11947109 and 12075172) and National Key R&D Program of China (Grant No. 2019YFA0210003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunqing He.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Handling Editor: Stephen Eichhorn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, L., Yin, C., Liu, L. et al. Magnetic aligned sulfonated carbon nanotube/Nafion composite membranes with anisotropic mechanical and proton conductive properties. J Mater Sci 56, 6764–6779 (2021). https://doi.org/10.1007/s10853-020-05678-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05678-0

Navigation