Log in

Synthesis and properties of poly(ethylene terephthalate) modified with a small amount of 1,10-decanediamine and hydrogen bonds

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Linear 1,10-decanediamine was chosen as a modified monomer to prepare modified poly(ethylene terephthalate) (PET) with a low content of amide bonds through two different synthetic methods. To evaluate the effect of amide bonds on the properties of poly(ester amide) analogs (PETAs), the performance of this new type of PET was compared with 1,10-decanediol-modified PET as a control group. The formation of hydrogen bonds in the PETAs was confirmed, and the stability of hydrogen-bonding interactions based on the low content of amide bonds at high temperature was discussed. Interestingly, physical cross-linking networks formed by hydrogen-bonding interactions improved the thermal stability, rheology, and mechanical properties of the PETAs. The crystallization properties were studied in depth by a series of tests, the results of which illustrated that the low content of amide bonds acted as a critical crystallization accelerator in the PETAs. A feasible strategy to prepare high-performance PET, which may be used as a packaging material, was introduced in this work.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Wang P, Wang M, Liu F, Ding S, Wang X, Du G, Liu J, Apel P, Kluth P, Trautmann C, Wang Y (2018) Ultrafast ion sieving using nanoporous polymeric membranes. Nat Commun 9(1):569. https://doi.org/10.1038/s41467-018-02941-6

    Article  CAS  Google Scholar 

  2. Cao W, Wei D, Jiang Y, Ye S, Zheng A, Guan Y (2018) Surface chemical bonding with poly(hexamethylene guanidine) for non-leaching antimicrobial poly(ethylene terephthalate). J Mater Sci 54(3):2699–2711. https://doi.org/10.1007/s10853-018-2966-0

    Article  CAS  Google Scholar 

  3. Babaahmadi V, Montazer M, Gao W (2017) Low temperature welding of graphene on PET with silver nanoparticles producing higher durable electro-conductive fabric. Carbon 118:443–451. https://doi.org/10.1016/j.carbon.2017.03.066

    Article  CAS  Google Scholar 

  4. Wang Y, Zhao J, Sha L, Zhu Y, Li X (2017) Design of broad-spectrum antimicrobial polyethylene terephthalate fabrics by coating composited natural brucites. J Mater Sci 53(3):1610–1622. https://doi.org/10.1007/s10853-017-1648-7

    Article  CAS  Google Scholar 

  5. Zhang X, Zhao S, Mohamed MG, Kuo S, **n Z (2020) Crystallization behaviors of poly(ethylene terephthalate) (PET) with monosilane isobutyl-polyhedral oligomeric silsesquioxanes (POSS). J Mater Sci 55(29):14642–14655. https://doi.org/10.1007/s10853-020-05003-9

    Article  CAS  Google Scholar 

  6. Luo J, Ma N, Zeng S, Gong X, Shi B, Li C, Zhao X, Hu T, Wu C (2018) Effect of ionization of polyamide-66 on its heterogeneous nucleation of poly(ethylene terephthalate) crystallization: an efficient polyamide-66 ionene nucleator promoted by ion-dipole interactions. Polym Test 71:301–311. https://doi.org/10.1016/j.polymertesting.2018.09.014

    Article  CAS  Google Scholar 

  7. Tong Z, Zhuo W, Zhou J, Huang R, Jiang G (2017) Crystallization behavior and enhanced toughness of poly(ethylene terephthalate) composite with noncovalent modified graphene functionalized by pyrene-terminated molecules: a comparative study. J Mater Sci 52(17):10567–10580. https://doi.org/10.1007/s10853-017-1173-8

    Article  CAS  Google Scholar 

  8. Sun S, Wang L, Song P, Ding L, Bai Y (2017) Facile fabrication of hydrolysis resistant phosphite antioxidants for high-performance optical PET films via in situ incorporation. Chem Eng J 328:406–416. https://doi.org/10.1016/j.cej.2017.07.070

    Article  CAS  Google Scholar 

  9. Yang YK, Bae SB, Hwang YT (2013) Novel catalysts based on zirconium(IV) for the synthesis of poly(ethylene terephthalate-co-isophthalate) copolyesters. Tetrahedron Lett 54(10):1239–1242. https://doi.org/10.1016/j.tetlet.2012.12.098

    Article  CAS  Google Scholar 

  10. Mao Z, Li J, Pan F, Zeng X, Zhang L, Zhong Y, Sui X, Xu H (2015) High-temperature auto-cross-linking cyclotriphosphazene: synthesis and application in flame retardance and antidrip** poly(ethylene terephthalate). Ind Eng Chem Res 54(15):3788–3799. https://doi.org/10.1021/ie504510t

    Article  CAS  Google Scholar 

  11. Wu JN, Chen L, Fu T, Zhao HB, Guo DM, Wang XL, Wang YZ (2018) New application for aromatic schiff base: high efficient flame-retardant and anti-drip** action for polyesters. Chem Eng J 336:622–632. https://doi.org/10.1016/j.cej.2017.12.047

    Article  CAS  Google Scholar 

  12. Hu YS, Prattipati V, Mehta S, Schiraldi DA, Hiltner A, Baer E (2005) Improving gas barrier of PET by blending with aromatic polyamides. Polymer 46(8):2685–2698. https://doi.org/10.1016/j.polymer.2005.01.056

    Article  CAS  Google Scholar 

  13. Joshi AS, Lawrence JG, Coleman MR (2019) Effect of Biaxial Orientation on microstructure and properties of renewable copolyesters of poly(ethylene terephthalate) with 2,5-furandicarboxylic acid for packaging application. ACS Appl Polym Mater 1(7):1798–1810. https://doi.org/10.1021/acsapm.9b00330

    Article  CAS  Google Scholar 

  14. **e L, **e Y, Wu Q, Wang M, Wu Q, Zhou X, Ge X (2015) Effect of poly(acrylic acid)-modified poly(ethylene terephthalate) on improving the integrated mechanical properties of poly(ethylene terephthalate)/elastomer blend. Ind Eng Chem Res 54(17):4748–4755. https://doi.org/10.1021/acs.iecr.5b00091

    Article  CAS  Google Scholar 

  15. Ding L, Liu L, Chen Y, Du Y, Guan S, Bai Y, Huang Y (2019) Modification of poly(ethylene terephthalate) by copolymerization of plant-derived α-truxillic acid with excellent ultraviolet shielding and mechanical properties. Chem Eng J 374:1317–1325. https://doi.org/10.1016/j.cej.2019.05.224

    Article  CAS  Google Scholar 

  16. Lechat C, Bunsell AR, Davies P (2010) Tensile and creep behaviour of polyethylene terephthalate and polyethylene naphthalate fibres. J Mater Sci 46(2):528–533. https://doi.org/10.1007/s10853-010-4999-x

    Article  CAS  Google Scholar 

  17. Chowreddy RR, Nord-Varhaug K, Rapp F (2018) Recycled polyethylene terephthalate/carbon nanotube composites with improved processability and performance. J Mater Sci 53(9):7017–7029. https://doi.org/10.1007/s10853-018-2014-0

    Article  CAS  Google Scholar 

  18. Ju L, Dennis JM, Heifferon KV, Long TE, Moore RB (2019) Compatibilization of polyester/polyamide blends with a phosphonated poly(ethylene terephthalate) ionomer: comparison of monovalent and divalent pendant ions. ACS Appl Polym Mater 1(5):1071–1080. https://doi.org/10.1021/acsapm.9b00097

    Article  CAS  Google Scholar 

  19. Novello MV, Carreira LG, Canto LB (2014) Post-consumer polyethylene terephthalate and polyamide 66 blends and corresponding short glass fiber reinforced composites. J Mater Res 17(5):1285–1294. https://doi.org/10.1590/1516-1439.281914

    Article  Google Scholar 

  20. Evstatiev M, Nicolov N, Fakirov S (1996) Morphology of microfibrillar reinforced composites PET/PA 6 blend. Polymer 37(20):4455–4463. https://doi.org/10.1016/0032-3861(96)00137-1

    Article  CAS  Google Scholar 

  21. Serhatkulu T, Erman B, Bahar I, Fakirov S, Evstatiev M, Sapundjieva D (1995) Dynamic mechanical study of amorphous phases in poly(ethylene terephthalate)/nylon-6 blends. Polymer 36(12):2371–2377. https://doi.org/10.1016/0032-3861(95)97335-D

    Article  CAS  Google Scholar 

  22. Yan Y, Gooneie A, Ye H, Deng L, Qiu Z, Reifler FA, Hufenus R (2018) Morphology and crystallization of biobased polyamide 56 blended with polyethylene terephthalate. Macromol Mater Eng 303(9):1800214. https://doi.org/10.1002/mame.201800214

    Article  CAS  Google Scholar 

  23. Tanaka FH, Cruz SA, Canto LB (2018) Morphological, thermal and mechanical behavior of sepiolite-based poly(ethylene terephthalate)/polyamide 66 blend nanocomposites. Polym Test 72:298–307. https://doi.org/10.1016/j.polymertesting.2018.10.027

    Article  CAS  Google Scholar 

  24. Retolaza A, Eguiazábal JI, Nazábal J (2004) Structure and mechanical properties of polyamide-6,6/poly(ethylene terephthalate) blends. Polym Eng Sci 44(8):1405–1413. https://doi.org/10.1002/pen.20136

    Article  CAS  Google Scholar 

  25. Khoshnevis H, Zadhoush A (2012) The influence of epoxy resin on the morphological and rheological properties of PET/PA66 blend. Rheol Acta 51(5):467–480. https://doi.org/10.1007/s00397-011-0615-5

    Article  CAS  Google Scholar 

  26. Winnacker M, Rieger B (2016) Poly(ester amide)s: recent insights into synthesis, stability and biomedical applications. Polym Chem 7(46):7039–7046. https://doi.org/10.1039/c6py01783e

    Article  CAS  Google Scholar 

  27. Fonseca AC, Gil MH, Simões PN (2014) Biodegradable poly(ester amide)s – a remarkable opportunity for the biomedical area: review on the synthesis, characterization and applications. Prog Polym Sci 39(7):1291–1311. https://doi.org/10.1016/j.progpolymsci.2013.11.007

    Article  CAS  Google Scholar 

  28. Li CG, Li SQ, Zhao JB, Zhang ZY, Zhang JY, Yang WT (2015) Synthesis and characterization of segmented poly(ether ester amide)s from diglycol, adipic acid, and a nylon-6 oligomer. Polym Eng Sci 55(4):763–770. https://doi.org/10.1002/pen.23944

    Article  CAS  Google Scholar 

  29. Soleimani A, Drappel S, Carlini R, Goredema A, Gillies ER (2014) Structure-property relationships for a series of poly(ester amide)s containing amino acids. Ind Eng Chem Res 53(4):1452–1460. https://doi.org/10.1021/ie4035219

    Article  CAS  Google Scholar 

  30. Lynch JG, Jaycox GD (2014) Stimuli-responsive polymers. 10. Photo-regulation of optical rotations in azobenzene modified poly(ester-amide)s containing highly structured, atropisomeric backbone geometries. Polymer 16:3564–3572. https://doi.org/10.1016/j.polymer.2014.06.065

    Article  CAS  Google Scholar 

  31. Basterretxea A, Gabirondo E, Sanchez-Sanchez A, Etxeberria A, Coulembier O, Mecerreyes D, Sardon H (2017) Synthesis and characterization of poly (ε-caprolactam-co-lactide) polyesteramides using Brønsted acid or Brønsted base organocatalyst. Eur Polym J 95:650–659. https://doi.org/10.1016/j.eurpolymj.2017.05.023

    Article  CAS  Google Scholar 

  32. Mejia JS, Gillies ER (2013) Triggered degradation of poly(ester amide)s via cyclization of pendant functional groups of amino acid monomers. Polym Chem 4(6):1969. https://doi.org/10.1039/c3py21094d

    Article  CAS  Google Scholar 

  33. Lebarbé T, Maisonneuve L, Nga Nguyen TH, Gadenne B, Alfos C, Cramail H (2012) Methyl 10-undecenoate as a raw material for the synthesis of renewable semi-crystalline polyesters and poly(ester-amide)s. Polym Chem 3(10):2842. https://doi.org/10.1039/c2py20394d

    Article  CAS  Google Scholar 

  34. Kluge M, Rennhofer H, Lichtenegger HC, Liebner FW, Robert T (2020) Poly(ester amide)s from poly(alkylene succinate)s and rapid crystallizing amido diols: synthesis, thermal properties and crystallization behavior. Eur Polym J 129:109622. https://doi.org/10.1016/j.eurpolymj.2020.109622

    Article  CAS  Google Scholar 

  35. Gupta S, Yuan X, Chung TCM, Kumar S, Cakmak M, Weiss RA (2013) Effect of hydroxyl-functionalization on the structure and properties of polypropylene. Macromolecules 46(14):5455–5463. https://doi.org/10.1021/ma4008658

    Article  CAS  Google Scholar 

  36. Gupta S, Yuan X, Chung TCM, Cakmak M, Weiss RA (2014) Isothermal and non-isothermal crystallization kinetics of hydroxyl-functionalized polypropylene. Polymer 55(3):924–935. https://doi.org/10.1016/j.polymer.2013.12.063

    Article  CAS  Google Scholar 

  37. Misra M, Agarwal M, Sinkovits DW, Kumar SK, Wang C, Pilania G, Ramprasad R, Weiss RA, Yuan X, Chung TCM (2014) enhanced polymeric dielectrics through incorporation of hydroxyl groups. Macromolecules 47(3):1122–1129. https://doi.org/10.1021/ma402220j

    Article  CAS  Google Scholar 

  38. Ni Y, Li Q, Chen L, Wu W, Qin Z, Zhang Y, Chen L, Wang X, Wang Y (2019) Semi-aromatic copolyesters with high strength and fire safety via hydrogen bonds and π-π stacking. Chem Eng J 374:694–705. https://doi.org/10.1016/j.cej.2019.05.212

    Article  CAS  Google Scholar 

  39. Kaczmarczyk B (1998) FT ir study of hydrogen bonds in aliphatic polyesteramides. Polymer 39(23):5853–5860. https://doi.org/10.1016/S0032-3861(98)00024-X

    Article  CAS  Google Scholar 

  40. Gao H, Bai Y, Liu H, He J (2019) Mechanical and gas barrier properties of structurally enhanced poly(ethylene terephthalate) by introducing 1,6-hexylenediamine unit. Ind Eng Chem Res 58(47):21872–21880. https://doi.org/10.1021/acs.iecr.9b04953

    Article  CAS  Google Scholar 

  41. Hu H, Zhang R, Sousa A, Long Y, Ying WB, Wang J, Zhu J (2018) Bio-based poly(butylene 2,5-furandicarboxylate)-b-poly(ethylene glycol) copolymers with adjustable degradation rate and mechanical properties: synthesis and characterization. Eur Polym J 106:42–52. https://doi.org/10.1016/j.eurpolymj.2018.07.007

    Article  CAS  Google Scholar 

  42. Marcel K, Dimitrios NB, Tobias R (2019) Enhancing the properties of poly(propylene succinate) by the incorporation of crystallizable symmetrical amido diols. Eur Polym J 120:109195. https://doi.org/10.1016/j.eurpolymj.2019.08.022

    Article  CAS  Google Scholar 

  43. Jeziorny A (1978) Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by d.s.c. Polymer 19:1142–1144. https://doi.org/10.1016/0032-3861(78)90060-5

    Article  CAS  Google Scholar 

  44. Wang Q, Zhang F, Qu D, Bai Y (2018) The effect of crystallization properties influenced by 2-methyl-1,3–propanediol units on the optical properties of modified poly(ethylene terephthalate). High Perform Polym 31(2):211–219. https://doi.org/10.1177/0954008318758490

    Article  CAS  Google Scholar 

  45. Mo Z (2008) A method for the non-isothermal crystallization kinetics of polymers. Acta Polym Sin 7:656–661. https://doi.org/10.3724/SP.J.1105.2008.00656

    Article  Google Scholar 

  46. Ozawa T (1971) Kinetics of non-isothermal crystallization. Polym 12:150–158. https://doi.org/10.1016/0032-3861(71)90041-3

    Article  CAS  Google Scholar 

  47. Orencha IP, Stribeck N, Ania F, Baer E, Hiltner A, Calleja FJB (2009) SAXS study on the crystallization of PET under physical confinement in PET/PC multilayered films. Polymer 50:2680–2687. https://doi.org/10.1016/j.polymer.2009.03.040

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **mei He or Yong** Bai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Gregory Rutledge.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 610 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, H., Liu, H., He, J. et al. Synthesis and properties of poly(ethylene terephthalate) modified with a small amount of 1,10-decanediamine and hydrogen bonds. J Mater Sci 56, 4922–4939 (2021). https://doi.org/10.1007/s10853-020-05590-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05590-7

Navigation