Log in

Highly ordered, ultralight three-dimensional graphene-like carbon for high-frequency electromagnetic absorption

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The three-dimensional porous structure of a material can trap the propagating electromagnetic waves by multiple reflections and scatterings, thereby improving the microwave absorption properties. The highly ordered and interconnected porous NaY zeolites can serve as the templates to prepare the three-dimensional graphene (3DG). A high defect density of 13.4–23.7 × 1010 cm−2 was obtained in the 3DG due to the incomplete replication. Simultaneously, the broken asymmetry of space charges in the defect sites will lead to the separation of space charges and the formation of electric dipoles, which results in significantly enhanced dielectric performance and microwave absorption. Consequently, owing to the porous structure and high specific surface area, the effective absorption band of the 3DG attains a large width of 14.3 GHz (3.7–18 GHz) with the absorber thicknesses located in 2–5 mm. The microwave absorption performance of 3DG is much superior to that of multilayer graphene with a two-dimensional structure. Hence, this ultralight 3DG can act as a promising microwave absorption material and probably gifts other physical applications in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Lv HL, Yang ZH, Wang PLY, Ji GB, Song JZ, Zheng LR, Zeng HB, Xu ZCJ (2018) A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv Mater 30:1706343

    Google Scholar 

  2. Kefeni KK, Msagati TAM, Mamba BB (2017) Ferrite nanoparticles: synthesis, characterisation and applications in electronic device. Mater Sci Eng B 215:37–55

    CAS  Google Scholar 

  3. Al-Ghamdi AA, Al-Ghamdi AA, Al-Turki Y, Yakuphanoglu F, El-Tantawy F (2016) Electromagnetic shielding properties of graphene/acrylonitrile butadiene rubber nanocomposites for portable and flexible electronic devices. Compos Part B 88:212–219

    CAS  Google Scholar 

  4. Song WL, Guan XT, Fan LZ, Zhao YB, Cao WQ, Wang CY, Cao MS (2016) Strong and thermostable polymeric graphene/silica textile for lightweight practical microwave absorption composites. Carbon 100:109–117

    CAS  Google Scholar 

  5. Mo ZC, Yang RL, Lu DW, Yang LL, Hu QM, Li HB, Zhu H, Tang ZK, Gui XC (2019) Lightweight, three-dimensional carbon Nanotube@TiO2 sponge with enhanced microwave absorption performance. Carbon 144:433–439

    CAS  Google Scholar 

  6. Liu XF, Chen YX, Cui XR, Zeng M, Yu RH, Wang GS (2015) Flexible nanocomposites with enhanced microwave absorption properties based on Fe3O4/ SiO2 nanorods and polyvinylidene fluoride. J Mater Chem A 3:12197–12204

    CAS  Google Scholar 

  7. Wang FY, Sun YQ, Li DR, Zhong B, Wu ZG, Zuo SY, Yan D, Zhou RF, Feng JJ, Yan PX (2018) Microwave absorption properties of 3D cross-linked Fe/C porous nanofibers prepared by electrospinning. Carbon 134:264–273

    CAS  Google Scholar 

  8. Wang XX, Ma T, Shu JC, Cao MS (2018) Confinedly tailoring Fe3O4 clusters-NG to tune electromagnetic parameters. Chem Eng J 332:321–330

    CAS  Google Scholar 

  9. Lu ZG, Ma LM, Tan JB, Wang HY, Ding XM (2016) Transparent multi-layer graphene/polyethylene terephthalate structures with excellent microwave absorption and electromagnetic interference shielding performance and microwave absorption with broadened bandwidth. Nanoscale 8:16684–16693

    CAS  Google Scholar 

  10. Wang L, Huang Y, Sun X, Huang HJ, Liu PB, Zong M, Wang Y (2014) Synthesis and microwave absorption enhancement of graphene@Fe3O4 @SiO2 @NiO nanosheet hierarchical structures. Nanoscale 6:3157–3164

    CAS  Google Scholar 

  11. Feng W, Wang YM, Chen JC, Wang L, Guo LX, Ouyang JH, Jia DC, Zhou Y (2016) Reduced graphene oxide decorated with in-situ growing ZnO nanocrystals: facile synthesis and enhanced microwave absorption properties. Carbon 108:52–60

    CAS  Google Scholar 

  12. Chen C, ** JB, Zhou EZ, Peng L, Chen ZC, Gao C (2018) Porous graphene microflowers for high-performance microwave absorption. Nano-Micro Lett 10:26

    Google Scholar 

  13. Zhang Y, Huang Y, Chen HH, Huang ZY, Yang Y, **ao PS, Zhou Y, Chen YS (2016) Composition and structure control of ultralight graphene foam for high-performance microwave absorption. Carbon 105:438–447

    CAS  Google Scholar 

  14. Xu DW, Yang S, Chen P, Yu Q, **ong XH, Wang J (2019) 3D nitrogen-doped porous magnetic graphene foam-supported Ni nanocomposites with superior microwave absorption properties. J Alloy Compd 782:600–610

    CAS  Google Scholar 

  15. Xu HL, Yin XW, Zhu M, Li MH, Zhang H, Wei HJ, Zhang LT, Cheng LF (2019) Constructing hollow graphene nano-spheres confined in porous amorphous carbon particles for achieving full X band microwave absorption. Carbon 142:346–353

    CAS  Google Scholar 

  16. Hu CG, Mou ZY, Lu GW, Chen N, Dong ZL, Hu MJ, Qu LT (2013) 3D graphene-Fe3O4 nanocomposites with high-performance microwave absorption. Phys Chem Chem Phys 15:13038

    CAS  Google Scholar 

  17. Ji HM, Li JH, Zhang JJ, Yan Y (2019) Remarkable microwave absorption performance of ultralight graphene-polyethylene glycol composite aerogels with a very low loading ratio of graphene. Compos Part A 123:158–169

    CAS  Google Scholar 

  18. Wang L, **ng HL, Gao ST, Ji XL, Shen ZY (2017) Porous flower-like NiO @graphene composites with superior microwave absorption properties. J Mater Chem C 5:2005–2014

    Google Scholar 

  19. Song CQ, Yin XW, Han MK, Li XL, Hou ZX, Zhang LT, Cheng LF (2017) Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties. Carbon 116:50–58

    CAS  Google Scholar 

  20. Wang ZC, Wei RB, Gu JW, Liu H, Liu CT, Luo CJ, Kong J, Shao Q, Wang N, Guo ZH, Liu XB (2018) Ultralight, highly compressible and fire-retardant graphene aerogel with self-adjustable electromagnetic wave absorption. Carbon 139:1126–1135

    CAS  Google Scholar 

  21. Zheng YW, Wang XX, Wei S, Zhang BQ, Yu MX, Zhao W, Liu JQ (2017) Fabrication of porous graphene-Fe3O4 hybrid composites with outstanding microwave absorption performance. Compos Part A 95:237–247

    CAS  Google Scholar 

  22. Stadie NP, Wang ST, Kravchyk KV, Kovalenk MV (2017) Zeolite-templated carbon as an ordered microporous electrode for aluminum batteries. ACS Nano 11:1911–1919

    CAS  Google Scholar 

  23. Kim K, Lee T, Kwon Y, Seo Y, Song JC, Park JK, Lee H, Park JY, Ihee H, Cho SJ, Ryoo R (2016) Lanthanum-catalysed synthesis of microporous 3D graphene-like carbons in a zeolite template. Nature 535:131–135

    CAS  Google Scholar 

  24. Nueangnoraj K, Nishihara H, Imai K, Itoi H, Ishii T, Kiguchi M, Sato Y, Terauchi M, Kyotani T (2013) Formation of crosslinked-fullerene-like framework as negative replica of zeolite Y. Carbon 62:455–464

    CAS  Google Scholar 

  25. Voiry D, Yang J, Kupferberg J, Fullon R, Lee C, Jeong HY, Shin HS, Chhowalla M (2016) High-quality graphene via microwave reduction of solution-exfoliated graphene oxide. Science 353:1413–1416

    CAS  Google Scholar 

  26. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401

    CAS  Google Scholar 

  27. Cançado LG, Jorio A, E. Ferreira HM, Stavale F, Achete CA, Capaz RB, Moutinho MVO, Lombardo A, Kulmala TS, Ferrari AC, (2011) Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett 11:3190–3196

    Google Scholar 

  28. Zafar Z, Ni ZH, Wu X, Shi ZX, Nan HY, Bai J, Sun LT (2013) Evolution of Raman spectra in nitrogen doped graphene. Carbon 61:57–62

    CAS  Google Scholar 

  29. Ammar MR, Galy N, Rouzaud JN, Toulhoat N, Vaudey CE, Simon P, Moncoffre N (2015) Characterizing various types of defects in nuclear graphite using Raman scattering: heat treatment, ion irradiation and polishing. Carbon 95:364–373

    CAS  Google Scholar 

  30. Nanda SS, Kim MJ, Yeom KS, An SSA, Ju H, Yi DK (2016) Raman spectrum of graphene with its versatile future perspectives. Trend Anal Chem 80:125–131

    CAS  Google Scholar 

  31. Viinikanoja A, Kauppila J, Damlin P, Suominena M, Kvarnstrom C (2015) In situ FTIR and Raman spectroelectrochemical characterization of graphene oxide upon electrochemical reduction in organic solvents. Phys Chem Chem Phys 17:12115–12123

    CAS  Google Scholar 

  32. Tu ZQ, Wu SF, Yang F, Li YF, Zhang LQ, Liu HW, Ding H, Richard P (2015) Synthesis of three-dimensional nanoporous graphene for use as surface-enhanced Raman scattering substrate. Mater Lett 152:264–267

    CAS  Google Scholar 

  33. Kim TH, Lee KB, Choi JW (2013) 3D graphene oxide-encapsulated gold nanoparticles to detect neural stem cell differentiation. Biomaterials 34:8660–8670

    CAS  Google Scholar 

  34. Pierlot AP, Woodhead AL, Church JS (2014) Thermal annealing effects on multi-walled carbon nanotube yarns probed by Raman spectroscopy. Spectrochim Acta A 117:598–603

    CAS  Google Scholar 

  35. Cividanes LS, Brunelli DD, Antunes EF, Corat EJ, Sakane KK, Thim GP (2013) Cure study of epoxy resin reinforced with multiwalled carbon nanotubes by Raman and luminescence spectroscopy. J Appl Polym Sci 127:544–553

    CAS  Google Scholar 

  36. Lemos V, Guerini S, Lala SM, Montoro LA, Rosolen JM (2005) Li-inserted carbon nanotube Raman scattering. Microelectr J 36:1020–1022

    CAS  Google Scholar 

  37. Monteiro FH, Larrude DG, Maia da Costa MEH, Freire FL (2013) Estimating the boron do** level on single wall carbon nanotubes using Raman spectroscopy. Mater Lett 92:224–226

    CAS  Google Scholar 

  38. He N, Yang XF, Shi LX, Yang XC, Lu Y, Tong GX, Wu WH (2020) Chemical conversion of Cu2O/PPy core-shell nanowires (CSNWs): A surface/interface adjustment method for high-quality Cu/Fe/C and Cu/ Fe3O4/C CSNWs with superior microwave absorption capabilities. Carbon 166:205–217

    CAS  Google Scholar 

  39. Wu B, Tuncer HM, Katsounaros A, Wu WP, Cole MT, Ying K, Zhang LH, Milne WI, Hao Y (2014) Microwave absorption and radiation from large-area multilayer CVD graphene. Carbon 77:814–822

    CAS  Google Scholar 

  40. Batrakov K, Kuzhir P, Maksimenko S, Voronovich N, Paddubskaya A, Valusis G, Kaplas T, Svirko Yu, Lambin Ph (2016) Enhanced microwave-to-terahertz absorption in graphene. Appl Phys Lett 108:123101

    Google Scholar 

  41. Liu L, He N, Wu T, Hu PB, Tong GX (2019) Co/C/Fe/C hierarchical flowers with strawberry-like surface as surface plasmon for enhanced permittivity, permeability and microwave absorption properties. Chem Eng J 355:103–108

    CAS  Google Scholar 

  42. Lv HL, Ji GB, Liu W, Zhang HQ, Du YW (2015) Achieving hierarchical hollow carbon@Fe@Fe3O4 nanospheres with superior microwave absorption properties and lightweight features. J Mater Chem C 3:10232–10241

    CAS  Google Scholar 

  43. He N, Liu MM, Qi JY, Tong JY, Sao W, Yang XC, Shi LX, Tong GX (2019) Plasmon resonance strategy to enhance permittivity and microwave absorbing performance of Cu/C core-shell nanowires. Chem Eng J 378:122160

    CAS  Google Scholar 

  44. He N, He ZD, Liu L, Lu Y, Wang FQ, Wu WH, Tong GX (2020) Ni2+ guided phase/structure evolution and ultra-wide bandwidth microwave absorption of CoxNi1-x alloy hollow microspheres. Chem Eng J 381:122743

    CAS  Google Scholar 

  45. Vázquez E, Prato M (2009) Carbon nanotubes and microwaves: Interactions, responses and applications. ACS Nano 3:3819–3824

    Google Scholar 

  46. Paredes JI, Rodil SV, Alonso AM, Tascon JMD (2008) Graphene oxide dispersions in organic solvents. Langmuir 24:10560–10564

    CAS  Google Scholar 

  47. Zhang XF, Guan PF, Guo JJ (2013) Dumbbell-like Fe3O4-Au nanoparticles for ultrabroadband electromagnetic losses by heterogeneous interfacial polarizations. Part Part Syst Charact 30:842–846

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Natural Science Foundation of China (U1704253, 51471045, 51471048 and 51401049), the Zhejiang provincial natural science foundation of China (LR18E010001), the fundamental research funds for the Central universities (N160208001) and the basic research program of key laboratory of Liaoning province (LZ2015035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefeng Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Liao, Y., Wang, Z. et al. Highly ordered, ultralight three-dimensional graphene-like carbon for high-frequency electromagnetic absorption. J Mater Sci 56, 4305–4315 (2021). https://doi.org/10.1007/s10853-020-05533-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05533-2

Navigation