Log in

One-step fabrication of HNBR/MIL-100 composites via selective hydrogenation of acrylonitrile-butadiene rubber with a catalyst derived from MIL-100(Fe)

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Heterogeneous catalyst has been widely used in hydrogenation process. However, the heterogeneous catalytic hydrogenation of acrylonitrile-butadiene rubber (NBR) usually requires high temperature and thus remains a significant challenge. Herein, an efficient MIL-100(Fe)-supported palladium (Pd) catalyst was successfully synthesized via a solution impregnation method without stabilizing and reducing agents and applied in selective hydrogenation of NBR with an in situ reduction process. Specifically, Pd2+ could be directly reduced to Pd0 during hydrogenation process, which would further get involved in the hydrogenation of NBR rapidly. As-obtained Pd(II)/MIL-100(Fe) composite exhibited highly catalytic activity toward NBR at room temperature due to the well-dispersed and small-sized Pd nanoparticles and the high external surface area of MIL-100(Fe). Furthermore, the hydrogenation degree of hydrogenated acrylonitrile-butadiene rubber (HNBR) could reach to 93% even at 10 °C. More importantly, the MIL-100/HNBR composites with improved mechanical properties could be also prepared by the one-step method through using the remained catalysts in HNBR substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Zhang J, Chen Y, Tan J, Sang HT, Zhang L, Yue D (2017) The synthesis of rhodium/carbon dots nanoparticles and its hydrogenation application. Appl Surf Sci 396:1138–1145. https://doi.org/10.1016/j.apsusc.2016.11.101

    Article  CAS  Google Scholar 

  2. Zou R, Li C, Zhang L, Yue D (2016) Selective hydrogenation of nitrile butadiene rubber (NBR) with rhodium nanoparticles supported on carbon nanotubes at room temperature. Catal Commun 81:4–9. https://doi.org/10.1016/j.catcom.2016.03.007

    Article  CAS  Google Scholar 

  3. Petrukhina NN, Filatova MP, Shandryuk GA (2019) Butadiene-styrene rubber hydrogenation over palladium catalysts synthesized in situ from emulsion. Pet Chem 59:1314–1319. https://doi.org/10.1134/S0965544119120090

    Article  CAS  Google Scholar 

  4. Zhou W, Peng X (2016) Preparation of a novel homogeneous bimetallic Rhodium/Palladium ionic catalyst and its application for the catalytic hydrogenation of nitrile butadiene rubber. J Organomet Chem 823:76–82. https://doi.org/10.1016/j.jorganchem.2016.09.009

    Article  CAS  Google Scholar 

  5. Cao P, Wu M, Zou R, Zhang L, Yue D (2015) A ternary Rh complex catalyst highly active and stable in the hydrogenation of acrylonitrile-butadiene rubber. New J Chem 39:1583–1586. https://doi.org/10.1039/c4nj01627k

    Article  CAS  Google Scholar 

  6. Wei Z, Wu J, Pan Q, Rempel GL (2005) Direct catalytic hydrogenation of an acrylonitrile-butadiene rubber latex using wilkinson’s catalyst. Macromol Rapid Commun 26:1768–1772. https://doi.org/10.1002/marc.200500553

    Article  CAS  Google Scholar 

  7. Zhou W, Peng X (2019) An insight into the catalytic hydrogenation mechanism of modified dendrimer-loaded rhodium ionic catalyst for unsaturated copolymer. Colloid Polym Sci 297:1001–1009. https://doi.org/10.1007/s00396-019-04533-2

    Article  CAS  Google Scholar 

  8. Ai C, Gong G, Zhao X, Liu P (2017) Selectively catalytic hydrogenation of nitrile-butadiene rubber using Grubbs II catalyst. Macromol Res 25:461–465. https://doi.org/10.1007/s13233-017-5058-0

    Article  CAS  Google Scholar 

  9. Cao P, Ni Y, Zou R, Zhang L, Yue D (2015) Enhanced catalytic properties of rhodium nanoparticles deposited on chemically modified SiO2 for hydrogenation of nitrile butadiene rubber. RSC Adv 5:3417–3424. https://doi.org/10.1039/c4ra11711e

    Article  CAS  Google Scholar 

  10. Ai C, Li J, Gong G, Zhao X, Liu P (2018) Preparation of hydrogenated nitrile-butadiene rubber (H-NBR) with controllable molecular weight with heterogeneous catalytic hydrogenation after degradation via olefin cross metathesis. React Funct Polym 129:53–57. https://doi.org/10.1016/j.reactfunctpolym.2017.12.016

    Article  CAS  Google Scholar 

  11. Cao P, Huang C, Zhang L, Yue D (2015) One-step fabrication of RGO/HNBR composites via selective hydrogenation of NBR with graphene-based catalyst. RSC Adv 5:41098–41102

    Article  CAS  Google Scholar 

  12. Chen J, Wu Z, Liu H, Bao X, Yuan P (2019) A Surface-cofunctionalized silica supported palladium catalyst for selective hydrogenation of nitrile butadiene rubber with enhanced catalytic activity and recycling performance. Ind Eng Chem Res 58:11821–11830. https://doi.org/10.1021/acs.iecr.9b01468

    Article  CAS  Google Scholar 

  13. Cheng T, Chen J, Cai A, Wang J, Liu H, Hu Y, Bao X, Yuan P (2018) Synthesis of Pd/SiO2 catalysts in various HCl concentrations for selective NBR Hydrogenation : effects of H + and Clconcentrations and electrostatic interactions. ACS Omega 3:6651–6659. https://doi.org/10.1021/acsomega.8b00244

    Article  CAS  Google Scholar 

  14. Wen S, Liang M, Zou R, Wang Z, Yue D, Liu L (2015) Electrospinning of palladium/silica nanofibers for catalyst applications. RSC Adv 5:41513–41519. https://doi.org/10.1039/c5ra02660a

    Article  CAS  Google Scholar 

  15. Andreou D, Iordanidou D, Tamiolakis I, Armatas GS, Lykakis IN (2016) Reduction of nitroarenes into aryl amines and N-aryl hydroxylamines via activation of NaBH4 and ammonia-borane complexes by Ag/TiO2 catalyst. Nanomaterials 6:2–13. https://doi.org/10.3390/nano6030054

    Article  CAS  Google Scholar 

  16. Gopiraman M, Jatoi AW, Hiromichi S, Yamaguchi K, Yong H, Chuang I, Kim IS (2016) Silver coated anionic cellulose nanofiber composites for an efficient antimicrobial activity. Carbohydr Polym 149:51–59. https://doi.org/10.1016/j.carbpol.2016.04.084

    Article  CAS  Google Scholar 

  17. Zou R, Wen S, Zhang L, Liu L, Yue D (2015) Preparation of Rh-SiO2 fiber catalyst with superior activity and reusability by electrospinning. RSC Adv 5:99884–99891. https://doi.org/10.1039/c5ra20473a

    Article  CAS  Google Scholar 

  18. Chen J, Ma L, Cheng T, Cai A, Hu Y, Wu Z, Liu H, Bao X, Yuan P (2018) Stable and recyclable Pd catalyst supported on modified silica hollow microspheres with macroporous shells for enhanced catalytic hydrogenation of NBR. J Mater Sci. https://doi.org/10.1007/s10853-018-2698-1

    Article  Google Scholar 

  19. Dong Z, Liang K, Dong C, Li X, Le X, Ma J (2015) Palladium modified magnetic mesoporous carbon derived from metal-organic frameworks as a highly efficient and recyclable catalyst for hydrogenation of nitroarenes. RSC Adv 5:20987–20991. https://doi.org/10.1039/c5ra00878f

    Article  CAS  Google Scholar 

  20. Guo Y, Chen X, Zhang X, Pu S, Zhang X, Yang C, Li D (2018) Comparative studies on ZIF-8 and SiO2 nanoparticles as carrier for immobilized β-glucosidase. Mol Catal 459:1–7. https://doi.org/10.1016/j.mcat.2018.08.004

    Article  CAS  Google Scholar 

  21. Latroche M, Surblé S, Serre C et al (2006) Hydrogen storage in the giant-pore metal-organic frameworks MIL-100 and MIL-101. Angew Chem 118:8407–8411. https://doi.org/10.1002/ange.200600105

    Article  Google Scholar 

  22. Wang D, Pan Y, Xu L, Li Z (2018) PdAu@MIL-100(Fe) cooperatively catalyze tandem reactions between amines and alcohols for efficient N-alkyl amines syntheses under visible light. J Catal 361:248–254. https://doi.org/10.1016/j.jcat.2018.02.033

    Article  CAS  Google Scholar 

  23. He L, Wang T, An J, Li X, Zhang L, Li L, Li G, Wu X, Su Z, Wang C (2014) Carbon nanodots@zeolitic imidazolate framework-8 nanoparticles for simultaneous pH-responsive drug delivery and fluorescence imaging. CrystEngComm 16:3259–3263. https://doi.org/10.1039/c3ce42506a

    Article  CAS  Google Scholar 

  24. Brandt P, Nuhnen A, Lange M, Lange M, Möllmer J, Weingart O, Janiak C (2019) Metal-organic frameworks with potential application for SO2 separation and flue gas desulfurization. ACS Appl Mater Interfaces 11:17350–17358. https://doi.org/10.1021/acsami.9b00029

    Article  CAS  Google Scholar 

  25. Abazari R, Mahjoub AR, Shariati J (2019) Synthesis of a nanostructured pillar MOF with high adsorption capacity towards antibiotics pollutants from aqueous solution. J Hazard Mater 366:439–451. https://doi.org/10.1016/j.jhazmat.2018.12.030

    Article  CAS  Google Scholar 

  26. Wang TC, Doty FP, Benin AI, Sugar JD, York WL, Reinheimer EW, Stavila V, Allendorf MD (2019) Get the light out: nanoscaling MOFs for luminescence sensing and optical applications. Chem Commun 55:4647–4650. https://doi.org/10.1039/C9CC01673B

    Article  CAS  Google Scholar 

  27. **ang Z, Fang C, Leng S, Cao D (2014) An amino group functionalized metal-organic framework as a luminescent probe for highly selective sensing of Fe3+ ions. J Mater Chem A 2:7662–7665. https://doi.org/10.1039/c4ta00313f

    Article  CAS  Google Scholar 

  28. Moghaddam ZS, Kaykhaii M, Khajeh M, Oveisi AR (2018) Synthesis of UiO-66-OH zirconium metal-organic framework and its application for selective extraction and trace determination of thorium in water samples by spectrophotometry. Spectrochim Acta Part A Mol Biomol Spectrosc 194:76–82. https://doi.org/10.1016/j.saa.2018.01.010

    Article  CAS  Google Scholar 

  29. Ding S, Yan Q, Jiang H, Zhong Z, Chen R, **ng W (2016) Fabrication of Pd@ZIF-8 catalysts with different Pd spatial distributions and their catalytic properties. Chem Eng J 296:146–153. https://doi.org/10.1016/j.cej.2016.03.098

    Article  CAS  Google Scholar 

  30. Xu B, Li X, Chen Z, Zhang T, Li C (2018) Pd@MIL-100(Fe) composite nanoparticles as efficient catalyst for reduction of 2/3/4-nitrophenol: synergistic effect between Pd and MIL-100(Fe). Microporous Mesoporous Mater 255:1–6. https://doi.org/10.1016/j.micromeso.2017.07.008

    Article  CAS  Google Scholar 

  31. Wang D, Li Z (2016) Coupling MOF-based photocatalysis with Pd catalysis over Pd@MIL-100(Fe) for efficient N-alkylation of amines with alcohols under visible light. J Catal 342:151–157. https://doi.org/10.1016/j.jcat.2016.07.021

    Article  CAS  Google Scholar 

  32. Wang D, Song Y, Cai J, Wu L, Li Z (2016) Effective photo-reduction to deposit Pt nanoparticles on MIL-100(Fe) for visible-light-induced hydrogen evolution. New J Chem 40:9170–9175. https://doi.org/10.1039/c6nj01989g

    Article  CAS  Google Scholar 

  33. Zhang F, Shi J, ** Y, Fu Y, Zhong Y, Zhu W (2015) Facile synthesis of MIL-100(Fe) under HF-free conditions and its application in the acetalization of aldehydes with diols. Chem Eng J 259:183–190. https://doi.org/10.1016/j.cej.2014.07.119

    Article  CAS  Google Scholar 

  34. Tan F, Liu M, Li K, Wang Y, Wang J, Guo X, Zhang G, Song C (2015) Facile synthesis of size-controlled MIL-100(Fe) with excellent adsorption capacity for methylene blue. Chem Eng J 281:360–367. https://doi.org/10.1016/j.cej.2015.06.044

    Article  CAS  Google Scholar 

  35. Ai C, Gong G, Zhao X, Liu P (2017) Macroporous hollow silica microspheres-supported palladium catalyst for selective hydrogenation of nitrile butadiene rubber. J Taiwan Inst Chem Eng 77:250–256. https://doi.org/10.1016/j.jtice.2017.02.031

    Article  CAS  Google Scholar 

  36. Luo ZH, Feng M, Lu H, Kong XX, Cao GP (2019) Nitrile butadiene rubber hydrogenation over a monolithic Pd/CNTs@Nickel foam catalysts: tunable CNTs morphology effect on catalytic performance. Ind Eng Chem Res 58:1812–1822. https://doi.org/10.1021/acs.iecr.8b04688

    Article  CAS  Google Scholar 

  37. Wang Q, Yang F, Yang Q, Chen J, Guan H (2010) Study on mechanical properties of nano-Fe3O4 reinforced nitrile butadiene rubber. Mater Des 31:1023–1028. https://doi.org/10.1016/j.matdes.2009.07.038

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by State Key Laboratory of Organic–Inorganic Composites, Bei**g University of Chemical Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongmei Yue.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Handling Editor: Christopher Blanford.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1797 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, N., Zhang, Y., Zhang, R. et al. One-step fabrication of HNBR/MIL-100 composites via selective hydrogenation of acrylonitrile-butadiene rubber with a catalyst derived from MIL-100(Fe). J Mater Sci 56, 326–336 (2021). https://doi.org/10.1007/s10853-020-05227-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05227-9

Navigation