Log in

A novel CeO2/MgAl2O4 composite coating for the protection of AZ31 magnesium alloys

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel CeO2/MgAl2O4 composite coating, fabricated via a cathode plasma electrolytic deposition (CPED) technique followed by hydrothermal synthesis, was developed in this study to explore its potential application as corrosion protection for AZ31 magnesium alloys. The microstructure observed through scanning electron microscopy indicated that reducing the duty cycle of the power source within a reasonable range during the CPED process was beneficial to form a uniform and dense MgAl2O4 coating, which served as an ideal adhesive matrix for a uniform CeO2 coating as the outermost layer. The results of electrochemical impedance spectra and neutral salt spray tests showed that the decoration of the CeO2 layer significantly improved the corrosion resistance of the CeO2/MgAl2O4 composite coating compared to the single MgAl2O4 coating and bare substrate. Cross-cut tests revealed that the adhesion of the MgAl2O4 coating and the CeO2/MgAl2O4 composite coating were both excellent due to the strong binding between the MgAl2O4 coating and the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Cao F, Song G, Atrens A (2016) Corrosion and passivation of magnesium alloys. Eval Program Plan 111:835–845

    CAS  Google Scholar 

  2. Jr SF, Llorente I (2015) Corrosion product layers on magnesium alloys AZ31 and AZ61: surface chemistry and protective ability. Appl Surf Sci 347:736–746

    Article  Google Scholar 

  3. Cui L, Gao S, Li P et al (2017) Corrosion resistance of a self-healing micro-arc oxidation/polymethyltrimethoxysilane composite coating on magnesium alloy AZ31. Eval Program Plan 118:84–95

    CAS  Google Scholar 

  4. Liu Q, Chen D, Kang Z (2015) One-step electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on magnesium alloy. ACS Appl Mater Interfaces 7:1859–1867

    Article  CAS  Google Scholar 

  5. Ghali E, Dietzel W, Kainer KU (2004) General and localized corrosion of magnesium alloys: a critical review. J Mater Eng Perform 13:7–23

    Article  CAS  Google Scholar 

  6. Gu C, Lian J, He J et al (2006) High corrosion-resistance nanocrystalline Ni coating on AZ91D magnesium alloy. Surf Coat Technol 200:5413–5418

    Article  CAS  Google Scholar 

  7. Jian S, Chu Y, Lin C (2015) Permanganate conversion coating on AZ31 magnesium alloys with enhanced corrosion resistance. Corros Sci 93:301–309

    Article  CAS  Google Scholar 

  8. **aogang L, Dawei Z, Zhiyong L et al (2015) Materials science: share corrosion data. Nature 527:441–442

    Article  Google Scholar 

  9. Song Y, Dong K, Shan D, Han EH (2013) Investigation of a novel self-sealing pore micro-arc oxidation film on AM60 magnesium alloy. J Magnes Alloy 1:82–87

    Article  CAS  Google Scholar 

  10. Gnedenkov SV, Egorkin et al (2013) Formation and electrochemical properties of the superhydrophobic nanocomposite coating on PEO pretreated Mg–Mn–Ce magnesium alloy. Surf Coat Technol 232:240–246

    Article  CAS  Google Scholar 

  11. Zeng R, Cui L, Jiang K et al (2016) In vitro corrosion and cytocompatibility of a microarc oxidation coating and poly(l-lactic acid) composite coating on Mg-1 Li-1 Ca alloy for orthopedic implants. ACS Appl Mater Interfaces 8:10014–10028

    Article  CAS  Google Scholar 

  12. Zhang G, Wu L, Tang A et al (2018) Active corrosion protection by a smart coating based on a MgAl-layered double hydroxide on a cerium-modified plasma electrolytic oxidation coating on Mg alloy AZ31. Corros Sci 139:370–382

    Article  CAS  Google Scholar 

  13. Zhang F, Liu ZG, Zeng RC et al (2014) Corrosion resistance of Mg–Al–LDH coating on magnesium alloy AZ31. Surf Coat Technol 258:1152–1158

    Article  CAS  Google Scholar 

  14. Zeng RC, Liu ZG, Zhang F et al (2014) Corrosion of molybdate intercalated hydrotalcite coating on AZ31 Mg alloy. J Mater Chem A 2:13049–13057

    Article  CAS  Google Scholar 

  15. Zhang F, Ju P, Pan M et al (2018) Self-healing mechanisms in smart protective coatings: a review. Corros Sci 144:74–88

    Article  Google Scholar 

  16. Ji R, Ma M, He Y et al (2018) Improved corrosion resistance of Al2O3 ceramic coatings on AZ31 magnesium alloy fabricated through cathode plasma electrolytic deposition combined with surface pore-sealing treatment. Ceram Int 44:15192–15199

    Article  CAS  Google Scholar 

  17. Ostrowski N, Lee B, Enick N et al (2013) Corrosion protection and improved cytocompatibility of biodegradable polymeric layer-by-layer coatings on AZ31 magnesium alloys. Acta Biomater 9:8704–8713

    Article  CAS  Google Scholar 

  18. Pogrebnjak AD, Kul’Ment’Eva OP, Kobzev AP et al (2003) Mass transfer and do** during electrolyte-plasma treatment of cast iron. Tech Phys Lett 29:312–315

    Article  CAS  Google Scholar 

  19. Gupta P, Tenhundfeld G, Daigle EO, Ryabkov D (2007) Electrolytic plasma technology: science and engineering—an overview. Surf Coat Technol 201:8746–8760

    Article  CAS  Google Scholar 

  20. Nie X, Tsotsos C, Wilson A et al (2001) Characteristics of a plasma electrolytic nitrocarburising treatment for stainless steels. Surf Coat Technol 139:135–142

    Article  CAS  Google Scholar 

  21. Belkin PN, Yerokhin A, Kusmanov SA (2016) Plasma electrolytic saturation of steels with nitrogen and carbon. Surf Coat Technol 307:1194–1218

    Article  CAS  Google Scholar 

  22. Peng W, Deng S, He Y et al (2016) Influence of polyethylene glycol on cathode plasma electrolytic depositing Al2O3 anti-oxidation coatings. Ceram Int 42:8229–8233

    Article  Google Scholar 

  23. Cheng Q, He Y (2015) Microstructure and characterization of a novel cobalt coating prepared by cathode plasma electrolytic deposition. Appl Surf Sci 353:1320–1325

    Article  Google Scholar 

  24. Liu P, Pan X, Yang W et al (2012) Al2O3–ZrO2 ceramic coatings fabricated on WE43 magnesium alloy by cathodic plasma electrolytic deposition. Mater Lett 70:16–18

    Article  CAS  Google Scholar 

  25. Hu J, Tang S, Zhang Z (2008) Microstructure and formation mechanism of cerium conversion coating on alumina borate whisker-reinforced AA6061 composite. Corros Sci 50:3185–3192

    Article  CAS  Google Scholar 

  26. Yang X, Ding X, Hao G, Liang Y (2017) Cathodic plasma electrolysis processing for metal. Plasma Chem Plasma Process 37:177–187

    Article  CAS  Google Scholar 

  27. Luo H, Dong CF, **ao K, Li XG (2011) Characterization of passive film on 2205 duplex stainless steel in sodium thiosulphate solution. Appl Surf Sci 258:631–639

    Article  CAS  Google Scholar 

  28. Lamaka SV, Xue HB, Meis NNAH et al (2015) Fault-tolerant hybrid epoxy-silane coating for corrosion protection of magnesium alloy AZ31. Prog Org Coat 80:98–105

    Article  CAS  Google Scholar 

  29. Duan H, Du K, Yan C, Wang F (2006) Electrochemical corrosion behavior of composite coatings of sealed MAO film on magnesium alloy AZ91D. Electrochim Acta 51:2898–2908

    Article  CAS  Google Scholar 

  30. Valdez B, Kiyota S, Stoytcheva M et al (2014) Cerium-based conversion coatings to improve the corrosion resistance of aluminium alloy 6061-T6. Corros Sci 87:141–149

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Number 51771027), the National Key Research and Development Program of China (Grant Number 2017YFB0702100) and the Fundamental Research Funds for the Central Universities (Grant Number FRF-BD-18-019A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junsheng Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, G., Qiao, Q., **, L. et al. A novel CeO2/MgAl2O4 composite coating for the protection of AZ31 magnesium alloys. J Mater Sci 55, 1727–1737 (2020). https://doi.org/10.1007/s10853-019-03992-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03992-w

Navigation