Log in

Superior suppression hydrodehalogenation performance of Pd nanoparticle decorated with metalloid-promoter GQDs for the selective hydrogenation of halonitrobenzenes

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel Pd nanocomposites (Pd@GQDs) tightly surrounded by GQDs on the porous carbon sphere is fabricated for the application in the thermocatalytic fields. The samples were characterized by BET, UV–Vis, PL, XRD and TEM and evaluated on their catalytic selective hydrogenation performance. The results show that strong surface interaction between abundant surface groups of GQDs, especially –COO−1 group, and Pd particle induces and drives GQDs directional deposition around the Pd particle in the process of Pd@GQDs generation. In the Pd@GQDs cluster, the electron distribution of Pd particle is rearranged and Pd possesses electron-rich property. The metalloid-promoter GQDs act as an electron donor like various metal additives in multicomponent metal catalysts in the thermocatalytic fields. The Pd@GQDs generates electron-rich H other than electron-deficient H when hydrogen is adsorbed on it, which might prefer to attack nitro group in halonitrobenzene molecule, compared with C–X bond. The superior selectivity and stability for the hydrogenation of various halonitrobenzenes to corresponding haloanilines are obtained. GQDs demonstrate a great prospect of application as a nonmetallic electron promoter in thermocatalytic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Scheme 1
Figure 5
Scheme 2

Similar content being viewed by others

References

  1. Wang XD, Liang MH, Zhang JL, Wang Y (2007) Selective hydrogenation of aromatic chloronitro compounds. Curr Org Chem 11(3):299–314

    Article  Google Scholar 

  2. Shi WX, Wang XG, Shang XF, Zou XJ, Ding WZ, Lu XG (2017) High performance and active sites of a ceria-supported palladium catalyst for solvent-free chemoselective hydrogenation of nitroarenes. ChemCatChem 9:3743–3751

    Article  Google Scholar 

  3. Lian C, Liu H, **ao C, Yang W, Zhang K, Liu Y, Wang Y (2012) Solvent-free selective hydrogenation of chloronitrobenzene to chloroaniline over a robust Pt/Fe3O4 catalyst. Chem Commun (Camb) 48:3124–3126

    Article  Google Scholar 

  4. Ma L, Chen S, Lu CS, Zhang QF, Li XN (2011) Highly selective hydrogenation of 3,4-dichloronitrobenzene over Pd/C catalysts without inhibitors. Catal Today 173:62–67

    Article  Google Scholar 

  5. Lyu JH, Lu CS, Ma L, Zhang QF, He XB, Li XN (2015) Size-dependent halogenated nitrobenzene hydrogenation selectivity of Pd nanoparticles. J Phys Chem C 118:2594–2601

    Article  Google Scholar 

  6. Li JY, Ma L, Li XN, Lu CS, Liu HZ (2005) Effect of nitric acid pretreatment on the properties of activated carbon and supported palladium catalysts. Ind Eng Chem Res 44:5478–5482

    Article  Google Scholar 

  7. Li X, Zhao S, Zhang W, Liu Y, Li R (2016) Ru nanoparticles supported on nitrogen-doped porous carbon derived from ZIF-8 as an efficient catalyst for the selective hydrogenation of p-chloronitrobenzene and p-bromonitrobenzene. Dalton Trans 45:15595–15602

    Article  Google Scholar 

  8. Lu CS, Wang MJ, Feng ZL, Qi YN, Feng F, Ma L, Zhang QF, Li XN (2017) A phosphorus–carbon framework over activated carbon supported palladium nanoparticles for the chemoselective hydrogenation of parac-hloronitrobenzene. Catal Sci Technol 7:1581–1589

    Article  Google Scholar 

  9. Li F, Cao B, Ma R, Song HL, Song H (2015) Preparation of Pt-B/Al2O3 amorphous alloy catalysts via microemulsion methods and application into hydrogenation of m-chloronitrobenzene. Can J Chem Eng 94:89–93

    Article  Google Scholar 

  10. Cárdenas-Lizana F, Gómez-Quero S, Hugon A, Delannoy L, Louis C, Keane M (2009) Pd-promoted selective gas phase hydrogenation of p-chloronitrobenzene over alumina supported Au. J Catal 262:235–243

    Article  Google Scholar 

  11. Mistri R, Llorca J, Ray BC, Gayen A (2013) Pd0.01Ru0.01Ce0.98O2-delta A highly active and selective catalyst for the liquid phase hydrogenation of p-chloronitrobenzene under ambient conditions. J Mol Catal A Chem 376:111–119

    Article  Google Scholar 

  12. Xu XS, Li XQ, Gu HZ, Huang ZB, Yan XH (2012) A highly active and chemoselective assembled Pt/C (Fe) catalyst for hydrogenation of o-chloronitrobenzene. Appl Catal A Gen 429:429–430

    Google Scholar 

  13. Li X, Wang Y, Li L, Huang W, **ao Z, Wu P, Zhao W, Guo W, Jiang P, Liang M (2017) Deficient copper decorated platinum nanoparticles for selective hydrogenation of chloronitrobenzene. J Mater Chem A 5:11294–11300

    Article  Google Scholar 

  14. Xu DQ, Hu ZY, Li WW, Luo SP, Xu AY (2005) Hydrogenation in ionic liquids: An alternative methodology toward highly selective catalysis of halonitrobenzenes to corresponding haloanilines. J Mol Catal A Chem 235:137–142

    Article  Google Scholar 

  15. Li H, Xu Y, Yang HF, Zhang F, Li HX (2009) Ni-B amorphous alloy deposited on an aminopropyl and methyl co-functionalized SBA-15 as a highly active catalyst for chloronitrobenzene hydrogenation. J Mol Catal A Chem 307:105–114

    Article  Google Scholar 

  16. Li F, Ma R, Cao B, Liang JR, Ren QM, Song H (2016) Effect of Co-B supporting methods on the hydrogenation of m-chloronitrobenzene over Co-B CNTs amorphous alloy catalysts. Appl Catal A Gen 514:248–252

    Article  Google Scholar 

  17. Li F, Zhu WX, Liang JR, Son H, Wang KL, Li CQ (2018) Carbon nanotube-supported amorphous Co–B for hydrogenation of m-chloronitrobenzene. J Chem Res 42:170–174

    Article  Google Scholar 

  18. Wang X, Li YW (2016) Chemoselective hydrogenation of functionalized nitroarenes using MOF-derived co-based catalysts. J Mol Catal A Chem 420:56–65

    Article  Google Scholar 

  19. Yang F, Cao Y, Chen Z, Hou LQ, Li YF (2018) Large-scale preparation of B/N co-doped graphene-like carbon as an efficient metal-free catalyst for reduction of nitroarenes. New J Chem 42:2718–2725

    Article  Google Scholar 

  20. Zhang P, Song XD, Yu C, Gui JZ, Qiu JS (2018) Biomass-derived carbon nanospheres with turbostratic structure as metal-free catalysts for selective hydrogenation of o-chloronitrobenzene. Acs Sustain Chem Eng 5:7481–7485

    Article  Google Scholar 

  21. Navalon S, Dhakshinamoorthy A, Alvaro M, Garcia H (2014) Carbocatalysis by graphene-based materials. Chem Rev 114:6179–6212

    Article  Google Scholar 

  22. Zheng XT, Ananthanarayanan A, Luo KQ, Chen P (2015) Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11:1620–1636

    Article  Google Scholar 

  23. Sun HJ, Wu L, Wei WL, Qu XG (2013) Recent advances in graphene quantum dots for sensing. Mater Today 16:433–442

    Article  Google Scholar 

  24. Zhang ZP, Zhang J, Chen N, Qu LG (2012) Graphene quantum dots an emerging material for energy related applications and beyond. Energy Environ Sci 5:8869–8890

    Article  Google Scholar 

  25. Zhu SJ, Song YB, Wang J, Wan H, Zhang Y, Ning Y, Yang B (2017) Photoluminescence mechanism in graphene quantum dots: quantum confinement effect and surface/edge state. Nano Today 13:10–14

    Article  Google Scholar 

  26. Bak S, Kim DY, Lee HY (2016) Graphene quantum dots and their possible energy applications. Curr Appl Phys 16:1192–1201

    Article  Google Scholar 

  27. Du Y, Guo SJ (2016) Chemically doped fluorescent carbon and graphene quantum dots for bioimaging, sensor, catalytic and photoelectronic applications. Nanoscale 8:2532–2543

    Article  Google Scholar 

  28. Li XM, Rui MC, Song JZ, Shen ZH, Zeng HB (2015) Carbon and graphene quantum dots for optoelectronic and energy devices: a review. Adv Funct Mater 25:4929–4947

    Article  Google Scholar 

  29. Li KH, Liu W, Ni Y, Li DP, Lin DM, Su ZQ, Wei G (2017) Technical synthesis and biomedical applications of graphene quantum dots. J Mater Chem B 5:4811–4826

    Article  Google Scholar 

  30. Chen WF, Lv G, Hu WM, Li DJ, Chen SN, Dai ZX (2018) Synthesis and applications of graphene quantum dots a review. Nanotechnol Rev 7:157–185

    Article  Google Scholar 

  31. Mitchell B, Bradley SJ, Nann T (2014) Graphene quantum dots. Part Part Syst Char 31:415–428

    Article  Google Scholar 

  32. He G, Song Y, Liu K, Walter A, Chen S, Chen SW (2013) Oxygen reduction catalyzed by platinum nanoparticles supported on graphene quantum dots. Acs Catal 3:831–838

    Article  Google Scholar 

  33. Zeng ZP, **ao FX, Phan H, Chen SF, Yu ZZ, Wang R, Nguyenc TQ, Thatt T, Tan Y (2018) Unraveling the cooperative synergy of zero-dimensional graphene quantum dots and metal nanocrystals enabled by layer-by-layer assembly. J Mater Chem A 6:1700–1713

    Article  Google Scholar 

  34. Naghshbandi Z, Arsalani N, Sadegh ZM, Geckeler KE (2018) A novel synthesis of magnetic and photoluminescent graphene quantum dots/MFe2O4(M = Ni, Co) nanocomposites for catalytic application. Appl Surf Sci 443:484–491

    Article  Google Scholar 

  35. Yang TY, Ling HJ, Lamonier JF, Jaroniec M, Huang J, Monteiro MJ, Liu J (2016) A synthetic strategy for carbon nanospheres impregnated with highly monodispersed metal nanoparticles. NPG Asia Mater 8:e240

    Article  Google Scholar 

  36. Liu J, Yang TY, Wang DW, Lu GQ, Zhao DY, Qiao SZ (2013) A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres. Nat Commun 4:2798–2804

    Article  Google Scholar 

  37. Choma J, Jamioła D, Augustynek K, Marszewski M, Gao M, Jaroniec M (2012) New opportunities in Stober synthesis: preparation of microporous and mesoporous carbon spheres. J Mater Chem 22:12636–12642

    Article  Google Scholar 

  38. Dong YQ, Shao JW, Chen CQ, Li H, Wang RX, Chi YW, Lin XM, Chen GN (2012) Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon 50:4738–4743

    Article  Google Scholar 

  39. ** J, **e C, Zhang Y, Wang L, **ao J, Duan X, Ren J, **ao F, Wang S (2016) Pd nanoparticles decorated N-doped graphene quantum dots@N-doped carbon hollow nanospheres with high electrochemical sensing performance in cancer detection. ACS Appl Mater Interfaces 8:22563–22573

    Article  Google Scholar 

  40. Jiang WD, Xu B, **ang Z, Liu XQ, Liu F (2016) Preparation and reactivity of UV light-reduced Pd/α-Fe2O3 catalyst towards the hydrogenation of o-chloronitrobenzene. Appl Catal A Gen 520:65–72

    Article  Google Scholar 

  41. Ma JW, Habrioux A, Pisarek M, Adam Lewera, Nicolas AV (2013) Induced electronic modification of Pt nanoparticles deposited onto graphitic domains of carbon materials by UV irradiation. Electrochem Commun 29:12–16

    Article  Google Scholar 

  42. Lu YM, Zhu HZ, Li WG, Hu B, Yu SH (2013) Size-controllable palladium nanoparticles immobilized on carbon nanospheres for nitroaromatic hydrogenation. J Mater Chem A 1:3783–3788

    Article  Google Scholar 

  43. Li LL, Ji J, Fei R, Wang CZ, Lu Q, Zhang JR, Jiang LP, Zhu JJ (2012) A facile microwave avenue to electrochemiluminescent two- color graphene quantum dots. Adv Funct Mater 22:2971–2979

    Article  Google Scholar 

  44. Tressaud A, Touhara H, Khaiboun S, Watanabe N, Anorg Z (2010) X-ray photoelectron spectroscopy of palladium fluorides†. Allg Chem 540:291–299

    Article  Google Scholar 

  45. Bird RJ, Swift P (1980) Energy calibration in electron spectroscopy and the re-determination of some reference electron binding energies. J Electron Spectrosc 21:227–240

    Article  Google Scholar 

  46. Kim KS, Gossmann AF, Winograd N (1974) X-ray photoelectron spectroscopic studies of palladium oxides and the palladium–oxygen electrode. Surf Sci 46:625–643

    Article  Google Scholar 

  47. Liu RH, Huang H, Li HT, Liu Y, Zhong J, Li YY, Zhang S, Kang ZH (2014) Metal nanoparticle carbon quantum dot composite as a photocatalyst for high-efficiency cyclohexane oxidation. Acs Catal 4:328–336

    Article  Google Scholar 

  48. Lu CS, Lv JH, Ma L, Zhang QF, Feng F, Li XN (2012) Highly selective hydrogenation of halonitroaromatics to aromatic haloamines by ligand modified Ni-based catalysts. Chin Chem Lett 23:545–548

    Article  Google Scholar 

  49. Liu R, Yang R, Qu CJ, Mao CH, Hu Y, Li JJ, Qu LB (2017) Synthesis of glycine-functionalized graphene quantum dots as highly sensitive and selective fluorescent sensor of ascorbic acid in human serum. Sens Actuators B Chem 241:644–651

    Article  Google Scholar 

  50. Cho HH, Yang H, Kang DJ, Kim BJ (2015) Surface engineering of graphene quantum dots and their applications as efficient surfactants. ACS Appl Mater Interfaces 7:8615–8621

    Article  Google Scholar 

  51. Yang Y, Liu Q, Liu Y, Cui J, Liu H, Wang P, Li Y, Chen L, Zhao Z, Dong Y (2017) A novel label-free electrochemical immunosensor based on functionalized nitrogen-doped graphene quantum dots for carcinoembryonic antigen detection. Biosens Bioelectron 90:31–38

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully thank for the project funded by National Natural Science Foundation of China (NSFC-21476207, 21476208 and 21473159), Natural Science Foundation of Zhejiang Province (LY17B060008) and Program from Science and Technology Department of Zhejiang Province (LGG18B060004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunshan Lu or **aonian Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 190 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, C., Ji, H., Zhu, Q. et al. Superior suppression hydrodehalogenation performance of Pd nanoparticle decorated with metalloid-promoter GQDs for the selective hydrogenation of halonitrobenzenes. J Mater Sci 54, 10153–10167 (2019). https://doi.org/10.1007/s10853-019-03610-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03610-9

Navigation