Log in

Micromechanical behavior of single-crystalline Cu6Sn5 by picoindentation

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The micromechanical behavior of single-crystalline Cu6Sn5 is studied by micropillar compression in a picoindenter. The compound Cu6Sn5 is important because it is used as a structural material in microbumps of advanced electronic packages. Micropillars of Cu6Sn5 with known crystallographic orientations were fabricated by focused ion beam machining. Pillars with the c-axis perpendicular to the load direction tended to possess higher strain to failure and lower Young’s modulus. Measured Young’s modulus from micropillar compression was compared with results from nanoindentation measurements. The modulus values from micropillar compression were consistently smaller than those from nanoindentation measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Agarwal R, Zhang W, Limaye P, Labie R, Dimcic B, Phommahaxay A, Soussan P (2010) Cu/Sn microbumps interconnect for 3D TSV chip stacking. In: 2010 Proceedings 60th electronic components and technology conference (ECTC), 1–4 June 2010, pp 858–863. doi:10.1109/ECTC.2010.5490698

  2. Yu A, Lau JH, Ho SW, Kumar A, Hnin WY, Yu D-Q, Jong MC, Kripesh V, Pinjala D, Kwong D-L (2009) Study of 15 μm pitch solder microbumps for 3D IC integration. In: 59th Electronic components and technology conference, 2009 (ECTC 2009), 26–29 May 2009, pp 6–10. doi:10.1109/ECTC.2009.5073988

  3. Chen HY, Shih DY, Wei CC, Tung CH, Hsiao YL, Yu DCH, Liang YC, Chen C (2013) Generic rules to achieve bump electromigration immortality for 3D IC integration. In: 2013 IEEE 63rd electronic components and technology conference (ECTC), 28–31 May 2013, pp 49–57. doi:10.1109/ECTC.2013.6575549

  4. Yoon SW, Ku JH, Suthiwongsunthorn N, Marimuthu PC, Carson F (2009) Fabrication and packaging of microbump interconnections for 3D TSV. In: IEEE international conference on 3D system integration, 2009 (3DIC 2009), 28–30 Sept. 2009, pp 1–5. doi:10.1109/3DIC.2009.5306554

  5. Chuang HY, Yang TL, Kuo MS, Chen YJ, Yu JJ, Li CC, Kao CR (2012) Critical concerns in soldering reactions arising from space confinement in 3-D IC packages. IEEE Trans Device Mater Reliab 12(2):233–240. doi:10.1109/tdmr.2012.2185239

    Article  Google Scholar 

  6. Yang TL, Yu JJ, Shih WL, Hsueh CH, Kao CR (2014) Effects of silver addition on Cu–Sn microjoints for chip-stacking applications. J Alloys Compd 605:193–198. doi:10.1016/j.jallcom.2014.03.165

    Article  Google Scholar 

  7. Yang TL, Zhu ZX, Yu JJ, Lin YF, Kao CR (2015) Interfacial energy effect on the distribution of Ag3Sn in full intermetallic joints. Adv Eng Mater 17(11):1528–1531. doi:10.1002/adem.201500153

    Article  Google Scholar 

  8. Yang TL, Aoki T, Matsumoto K, Toriyama K, Horibe A, Mori H, Orii Y, Wu JY, Kao CR (2016) Full intermetallic joints for chip stacking by using thermal gradient bonding. Acta Mater 113:90–97. doi:10.1016/j.actamat.2016.04.046

    Article  Google Scholar 

  9. Uchic MD, Dimiduk DM (2005) A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing. Mater Sci Eng A 400–401:268–278. doi:10.1016/j.msea.2005.03.082

    Article  Google Scholar 

  10. Jiang L, Chawla N (2010) Mechanical properties of Cu6Sn5 intermetallic by micropillar compression testing. Scr Mater 63(5):480–483. doi:10.1016/j.scriptamat.2010.05.009

    Article  Google Scholar 

  11. Jiang L, Jiang H, Chawla N (2012) The effect of crystallographic orientation on the mechanical behavior of Cu6Sn5 by micropillar compression testing. J Electron Mater 41(8):2083–2088. doi:10.1007/s11664-012-2124-4

    Article  Google Scholar 

  12. Nogita K, Gourlay CM, McDonald SD, Wu YQ, Read J, Gu QF (2011) Kinetics of the η–η′ transformation in Cu6Sn5. Scr Mater 65(10):922–925. doi:10.1016/j.scriptamat.2011.07.058

    Article  Google Scholar 

  13. Fei H, Abraham A, Chawla N, Jiang H (2012) Evaluation of micro-pillar compression tests for accurate determination of elastic–plastic constitutive relations. J Appl Mech 79(6):061011. doi:10.1115/1.4006767

    Article  Google Scholar 

  14. Sneddon IN (1965) The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int J Eng Sci 3(1):47–57. doi:10.1016/0020-7225(65)90019-4

    Article  Google Scholar 

  15. Zhang H, Schuster BE, Wei Q, Ramesh KT (2006) The design of accurate micro-compression experiments. Scr Mater 54(2):181–186. doi:10.1016/j.scriptamat.2005.06.043

    Article  Google Scholar 

  16. Wheeler JM, Michler J (2013) Elevated temperature, nano-mechanical testing in situ in the scanning electron microscope. Rev Sci Instrum 84(4):045103. doi:10.1063/1.4795829

    Article  Google Scholar 

  17. Simmons G, Wand H (1971) Single crystal elastic constants and calculated aggregate properties: a handbook. MIT Press, Cambridge

    Google Scholar 

  18. Ghosh G (2004) Elastic properties, hardness, and indentation fracture toughness of intermetallics relevant to electronic packaging. J Mater Res 19(05):1439–1454. doi:10.1557/JMR.2004.0193

    Article  Google Scholar 

  19. Pharr GM, Oliver WC, Brotzen FR (1992) On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation. J Mater Res 7(03):613–617. doi:10.1557/JMR.1992.0613

    Article  Google Scholar 

  20. Larsson AK, Stenberg L, Lidin S (1995) Crystal structure modulations in eta-Cu5Sn4. Z Kristallogr 210:832–837

    Google Scholar 

  21. Hütsch J, Lilleodden ET (2014) The influence of focused-ion beam preparation technique on microcompression investigations: lathe vs. annular milling. Scr Mater 77:49–51. doi:10.1016/j.scriptamat.2014.01.016

    Article  Google Scholar 

  22. Cabarat R, Guillet L, Roux LE (1949) The elastic properties of metallic alloys. J Inst Met 75:391–402

    Google Scholar 

  23. Subrahmanyam B (1972) Elastic moduli of some complicated binary alloy systems. Trans Jpn Inst Met 13(2):93–95

    Article  Google Scholar 

  24. Ostrovskaya L, Rodin V, Kuznetsov A (1985) Elastic properties of intermetallic compounds produced by vacuum deposition. Sov J Non-Ferr Met 26(3):90–91

    Google Scholar 

  25. Field RJ, Low SR 3rd, Lucey JGK (1991) Physical and mechanical of intermetallic compounds commonly found in solder joints. In: 1991 Proceedings of TMS symposium, 20–24 October 1991, pp 165–174

  26. Chromik RR, Vinci RP, Allen SL, Notis MR (2003) Nanoindentation measurements on Cu–Sn and Ag–Sn intermetallics formed in Pb-free solder joints. J Mater Res 18(09):2251–2261. doi:10.1557/JMR.2003.0314

    Article  Google Scholar 

  27. Deng X, Koopman M, Chawla N, Chawla KK (2004) Young’s modulus of (Cu, Ag)–Sn intermetallics measured by nanoindentation. Mater Sci Eng A 364(1–2):240–243. doi:10.1016/j.msea.2003.08.032

    Article  Google Scholar 

  28. Jang GY, Lee JW, Duh JG (2004) The nanoindentation characteristics of Cu6Sn5, Cu3Sn, and Ni3Sn4 intermetallic compounds in the solder bump. J Electron Mater 33(10):1103–1110. doi:10.1007/s11664-004-0111-0

    Article  Google Scholar 

  29. Tsukamoto H, Dong Z, Huang H, Nishimura T, Nogita K (2009) Nanoindentation characterization of intermetallic compounds formed between Sn–Cu (–Ni) ball grid arrays and Cu substrates. Mater Sci Eng B 164(1):44–50. doi:10.1016/j.mseb.2009.06.013

    Article  Google Scholar 

  30. Lotfian S, Molina-Aldareguia JM, Yazzie KE, Llorca J, Chawla N (2013) Mechanical characterization of lead-free Sn–Ag–Cu solder joints by high-temperature nanoindentation. J Electron Mater 42(6):1085–1091. doi:10.1007/s11664-013-2517-z

    Article  Google Scholar 

  31. Mu D, Huang H, Nogita K (2012) Anisotropic mechanical properties of Cu6Sn5 and (Cu, Ni)6Sn5. Mater Lett 86:46–49. doi:10.1016/j.matlet.2012.07.018

    Article  Google Scholar 

  32. Song JM, Huang BR, Liu CY, Lai YS, Chiu YT, Huang TW (2012) Nanomechanical responses of intermetallic phase at the solder joint interface—crystal orientation and metallurgical effects. Mater Sci Eng A 534:53–59. doi:10.1016/j.msea.2011.11.037

    Article  Google Scholar 

  33. Yang PF, Lai YS, Jian SR, Chen J, Chen RS (2008) Nanoindentation identifications of mechanical properties of Cu6Sn5, Cu3Sn, and Ni3Sn4 intermetallic compounds derived by diffusion couples. Mater Sci Eng A 485(1–2):305–310. doi:10.1016/j.msea.2007.07.093

    Article  Google Scholar 

Download references

Acknowledgements

This study is supported by the Ministry of Science and Technology of Taiwan (104-2221-E-002-040-MY3), National Taiwan University (105R891804), and Taiwan Semiconductor Manufacturing Company (Center-JDP-2016-1628).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. R. Kao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J.J., Wu, J.Y., Yu, L.J. et al. Micromechanical behavior of single-crystalline Cu6Sn5 by picoindentation. J Mater Sci 52, 7166–7174 (2017). https://doi.org/10.1007/s10853-017-0952-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0952-6

Keywords

Navigation