Log in

Insight into co-operative growth of nearly monodispersive CdS nanocrystals embedded in polyvinyl pyrrolidone

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanocomposites of CdS nanocrystals (NCs) embedded in a polyvinyl pyrrolidone are grown using one-step chemical bath deposition technique. While this method eliminates an additional step for the growth of NCs, it also leads to the formation of nearly monodispersive CdS NCs as indicated by absorption, reflection, and photoluminescence spectroscopy. Further, scanning electron microscopy, energy-dispersive spectroscopy, and transmission electron microscopic investigations reveal the formation of nearly monodispersive CdS NCs (~6 to 10 nm) embedded in PVP spheres of sizes ~100 to 600 nm. Systematic study of variation in Cadmium acetate (Cd ion source), Thiourea (S ion source), PVP concentration, deposition time, and heating/cooling cycles elucidates the co-operative growth mechanism for CdS-PVP nanocomposite. The experimental observations of this study are corroborated with existing theoretical simulations for nanocomposite growth, which explicates that collapse of PVP into a sphere is crucial to inclusion of only nearly monodispersive CdS NCs. Important insights obtained from this work give control on the growth of nearly monodispersive CdS NCs embedded in PVP, using a simple and inexpensive growth technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Potyrailo RA, Leach AA (2006) Selective gas nanosensors with multisize CdSe nanocrystal/polymer composite films and dynamic pattern recognition. Appl Phys Lett 88:134110

    Article  Google Scholar 

  2. Patel AA, Wu F, Zhang JZ, Torres-Martinez CL, Mehra RK, Yang Y, Risbud SH (2000) Synthesis, Optical spectroscopy and ultrafast electron dynamics of PbS nanoparticles with different surface cap**. J Phys Chem B 104:11598–11605

    Article  Google Scholar 

  3. Lü C, Guan C, Liu Y, Cheng Y, Yang B (2005) PbS/Polymer nanocomposite optical materials with high refractive index. Chem Mater 17:2448–2454

    Article  Google Scholar 

  4. Pattabi M, Saraswathi B, Manzoor AK (2007) Photoluminescence study of PVP capped CdS nanoparticles embedded in PVA matrix. Mater Res Bull 42:828–835

    Article  Google Scholar 

  5. **a Q, Chen X, Zhao K, Liu J (2008) Synthesis and characterizations of polycrystalline walnut-like CdS nanoparticle by solvothermal method with PVP as stabilizer. Mater Chem Phys 111:98–105

    Article  Google Scholar 

  6. Asunskis DJ, Bolotin IL, Hanley L (2008) Nonlinear optical properties of PbS nanocrystals grown in polymer solutions. J Phys Chem C112:9555–9558

    Google Scholar 

  7. Peretz S, Sava B, Elisa M, Stanciu G (2009) Cadmium Sulfide nanoparticles embedded in polymeric matrices. J Optoelectron Adv M 11:2108

    Google Scholar 

  8. Singla ML, Shafeeq M, Kumar M (2009) Optical characterization of ZnO nanoparticles capped with various surfactants. J Lumin 129:434–438

    Article  Google Scholar 

  9. Yoo DS, Ha SY, Kim IG, Choo MS, Kim K, Lee ES (2011) Characterization of CdS nanoparticles embedded in polyvinyl alcohol. New Phys 61:680–686

    Google Scholar 

  10. Saravanan L, Diwakar S, Mohankumar R, Pandurangan A, Jayavel R (2011) Synthesis, structural and optical properties of PVP encapsulated CdS nanoparticles. Nanomater Nanotechnol 1:42–48

    Google Scholar 

  11. Elashmawi IS, Abdelghany AM, Hakeem NA (2013) Quantum confinement effect of CdS nanoparticles dispersed within PVP/PVA nanocomposites. J Mater Sci 24:2956–2961. doi:10.1007/s10854-013-1197-z

    Google Scholar 

  12. Abdelghany AM, Abdelrazek EM, Rashad DS (2014) Impact of in situ preparation of CdS filled PVP nano-composite. Spectrosc Acta A 130:302–308

    Article  Google Scholar 

  13. Krishnakumar V, Shanmugham G (2015) Influence of Mg dopant on the third-order nonlinear optical properties of CdS-PVP nanocomposite films. Mater Lett 141:149–152

    Article  Google Scholar 

  14. Nisha KD, Navaneethan M, Dhanalakshmi B, Murali SK, Hayakawa Y, Ponnusamy S, Muthamizhchelvan C, Gunasekaran P (2015) Effect of organic-ligands on the toxicity profiles of CdS nanoparticles and functional properties. Colloids Surf B 126:407–413

    Article  Google Scholar 

  15. García-Valenzuelaa JA, Nájera-Luna AL, Castillo-Ortegaa MM, Huc H, Sotelo-Lerma M (2015) An inexpensive, rapid, safe, and recycling-favoring method for the fabrication of core/shell PVP/CdS composite fibers from a gas–solid reaction between H2S vapor and electrospun PVP/CdCl2. Mater Sci Semicond Process 38:257–265

    Article  Google Scholar 

  16. de Gennes RG (1976) Conformation of a polymer chain in certain mixed solvents. J Phys Lett 37:59–61

    Article  Google Scholar 

  17. Diamant H, Andelman D (2000) Self-assembly in mixtures of polymers and small associating molecules. Macromolecules 33:8050–8061

    Article  Google Scholar 

  18. Thompson RB, Ginzburg VV, Matsen WM, Balazs AC (2002) Block copolymer-directed assembly of nanoparticles: forming mesoscopically, ordered hybrid materials. Macromolecules 35:1060–1071

    Article  Google Scholar 

  19. Balazs AC, Emrick T, Rusell TP (2006) Nanoparticle polymer composites: where two small worlds meet. Science 314:1107–1110

    Article  Google Scholar 

  20. Cao D, Wu J (2007) Density functional theory of a primitive model of nanoparticle-block copolymer mixture. J Chem Phys 126:144912

    Article  Google Scholar 

  21. Schwerzel RE, Spahr KB, Kurmer JP, WoodJerry VE, Jenkins A (1998) Nanocomposite photonic polymers. 1. Third-order nonlinear optical properties of capped cadmium sulfide nanocrystals in an ordered polydiacetylene host. J Phys Chem A 102:5622–5626

    Article  Google Scholar 

  22. Du H, Xu GQ, Chin WS, Huang L, Ji W (2002) Synthesis, characterization, and nonlinear optical properties of hybridized CdS-polystyrene nanocomposites. Chem Mater 14:4473–4479

    Article  Google Scholar 

  23. **g C, Xu X, Zhang X, Liu Z, Chu J (2009) In situ synthesis and third-order nonlinear optical properties of CdS/PVP nanocomposite films. J Phys D Appl Phys 42:075402

    Article  Google Scholar 

  24. Gadave KM, Jodgudri SA, Lokhande CD (1994) Chemical deposition of PbS from an acidic bath. Thin Solid Films 245:7–9

    Article  Google Scholar 

  25. Nascu C, Vomir V, Pop I, Ionescu V, Grecu R (1996) The study of lead sulphide films.VI. Influence of oxidants on the chemically deposited PbS thin films. Mater Sci Eng, B 4:235–240

    Article  Google Scholar 

  26. Mane RS, Lokhande CD (2000) Chemical deposition method for metal chalcogenide thin films. Mater Chem Phys 65:1–31

    Article  Google Scholar 

  27. Valenta J, Dian J, Luterová K, Pelant I, Buršík J, Nižňanský D (2001) Electroluminescence from sol-gel derived film of CdS nanocrystals. Phys Status Solidi (A) 184:R1–R3

    Article  Google Scholar 

  28. Huang NM, Kan CS, Khiew PS, Radiman S (2004) Single w/o microemuls ion templating of CdS nanoparticles. J Mater Sci 39:2411–2415. doi:10.1023/B:JMSC.0000020003.51378.55

    Article  Google Scholar 

  29. Patil RS, Lokhande CD, Mane RS, Gujar TP, Han SH (2007) Room temperature PbS nanoparticle growth, incubation in porous TiO2 electrode for photosensitization application. J Non-Cryst Solids 353:1645–1649

    Article  Google Scholar 

  30. Antolini F, Pentimalli M, Di Luccio T, Terzi R, Schioppa M (2005) Structural characterization of CdS nanoparticles grown in polystyrene matrix by thermolytic synthesis. Mater Lett 59:3181–3187

    Article  Google Scholar 

  31. Ingale AA, Aggarwal R, Bapna K, Tiwari P, Srivastava AK (2010). In: Proceedings of international conference on nano science and technology, Mumbai 213

  32. Shukla V, Mittal M, Ingale AA (2004) Study of phase transition on annealing of oriented CdS thin films grown by CBD technique. In: Proceedings of DAE-Solid state physics symposium, Amritsar, 49: 538

  33. Wang Y, Herron N (1990) Quantum size effects on the exciton energy of CdS clusters. Phys Rev B 42:7253–7255

    Article  Google Scholar 

  34. Campbell IH, Fauchet PM (1986) The effect of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Commun 58:739–741

    Article  Google Scholar 

  35. Kus S, Marczenko Z, Obarski N (1996) Derivative UV–VIS spectrophotometry in analytical chemistry. Chern Anal 41:899–927

    Google Scholar 

  36. Horvath MP, Copeland RA, Makinen MW (1999) The second derivative electronic absorption spectrum of cytochromec oxidase in the Soret region. Biophys J 77:1694–1711

    Article  Google Scholar 

  37. Fochs PD (1956) The measurement of the energy gap of semiconductors from their diffuse reflection spectra. Proc Phys Soc B 69:70

    Article  Google Scholar 

  38. Nowak M, Kauch B, Szperlich P (2009) Determination of energy band gap of nanocrystalline SbSI using diffuse reflectance spectroscopy. Rev Sci Instrum 80:046107

    Article  Google Scholar 

  39. Verma P, Manoj GS, Pandey AC (2010) Organic cap**-effect and mechanism in Mn doped CdS nanocomposites. Phys B 405:1253–1257

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. S. C. Mehendale, Dr. H. S. Rawat, Dr. S. K. Deb, and Dr. P. K. Gupta for their support provided during the course of this work. We thank Mr. K. Rajiv for the help provided in obtaining the diffuse reflectance data. We also thank Smt. R. Selvamani for performing gold coating on the samples for SEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekta Rani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 599 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, E., Aggarwal, R., Ingale, A.A. et al. Insight into co-operative growth of nearly monodispersive CdS nanocrystals embedded in polyvinyl pyrrolidone. J Mater Sci 51, 1581–1590 (2016). https://doi.org/10.1007/s10853-015-9481-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9481-3

Keywords

Navigation