Log in

Electrospun composite nanofibers of polyacrylonitrile and Ag2CO3 nanoparticles for visible light photocatalysis and antibacterial applications

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

First time, polyacrylonitrile (PAN)/Ag2CO3 composite nanofibers (NFs) with uniformly distributed Ag2CO3 nanoparticles (NPs) inside polyacrylonitrile NFs were fabricated via simple and versatile technique; electrospinning of colloidal solution of PAN and Ag2CO3 NPs. In this work, Ag2CO3 NPs were synthesized by ion-exchange method between Ag(NH3) +2 and NaHCO3. The experimental result demonstrated that PAN/Ag2CO3 composite NFs with average diameter of approximately 430 nm can exhibit good photocatalytic activity for the photodegradation of methyl red under visible light irradiation. In addition, thus obtained composite NFs displayed enhanced antibacterial activities toward both gram-positive and gram-negative bacteria due to its photogenerated electron–hole pairs indicating that this sort of material may represent a new, promising alternative with a wide range of potential application in the field of water treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang P, Huang B, Qin X, Zhang X, Dai Y, Wei J, Whangbo MH (2008) Ag@AgCl: a highly efficient and stable photocatalyst active under visible light. Angew Chem Int Ed 47:7931–7933. doi:10.1002/anie.200802483

    Article  Google Scholar 

  2. Han L, Wang P, Zhu CZ, Zhai YM, Dong SJ (2011) Facile solvothermal synthesis of cube-like Ag@AgCl: a highly efficient visible light photocatalyst. Nanoscale 3(7):2931–2935

    Article  Google Scholar 

  3. Lou ZZ, Huang BB, Qin XY, Zhang XY, Cheng HF, Liu YY, Wang SY, Wang JP, Dai Y (2012) One-step synthesis of AgCl concave cubes by preferential overgrowth along 〈111〉 and 〈111〉 directions. Chem Commun 48(29):3488–3490

    Article  Google Scholar 

  4. Ji ZY, Shen XP, Yang JL, Xu Y, Li L, Zhu GX, Chen KM (2013) Graphene oxide modified Ag2O nanocomposites with enhanced photocatalytic activity under visible-light irradiation. J Inorg Chem 36:6119–6125

    Google Scholar 

  5. Yi ZG, Ye JH, Kikugawa N, Kako T, Ouyang SX, Stuart-Williams H, Yang H, Cao JY, Luo WJ, Li ZS, Liu Y, Withers RL (2010) An orthophosphate semiconductor with photooxidation properties under visible-light irradiation. Nat Mater 9:559–564. doi:10.1038/nmat2780

    Article  Google Scholar 

  6. Zhang L, He YM, Ye P, Wu Y, Wu TH (2013) Visible light photocatalytic activities of ZnFe2O4 loaded by Ag3VO4 heterojunction composites. J Alloys Comp 549:105–113. doi:10.1016/j.jallcom.2012.09.063

    Article  Google Scholar 

  7. Ouyang S, Chen D, Wang DF, Li ZS, Ye J, Zou ZG (2010) From β - phase particle to α -phase hexagonal-platelet superstructure over AgGaO2: phase transformation, formation mechanism of morphology, and photocatalytic properties. Cryst Growth Des 10(7):2921–2927

    Article  Google Scholar 

  8. Lou Z, Huang B, Wang Z, Ma X, Zhang R, Zhang X, Qin X, Dai Y, Whangbo MH (2014) Ag6Si2O7: a silicate photocatalyst for the visible region. Chem Mater 26:3873–3875. doi:10.1021/cm500657n

    Article  Google Scholar 

  9. Dai G, Yu J, Liu G (2012) A new approach for photocorrosion inhibition of Ag2CO3 photocatalyst with highly visible-light-responsive reactivity. J Phys Chem C 116(29):15519–15524

    Article  Google Scholar 

  10. Dong HJ, Chen G, Sun JX, Li CM, Yu YG, Chen DH (2013) A novel high-efficiency visible-light sensitive Ag2CO3 photocatalyst with universal photodegradation performances: simple synthesis, reaction mechanism and first-principles study. Appl Catal B 134–135:46–54. doi:10.1016/j.apcatb.2012.12.041

    Article  Google Scholar 

  11. Buckley JJ, Gai PL, Lee AF, Olivi L, Wilson K (2008) Silver carbonate nanoparticles stabilised over alumina nanoneedles exhibiting potent antibacterial properties. Chem Commun 4013(34):4013–4015

    Article  Google Scholar 

  12. Xu C, Liu Y, Huang B, Li H, Qin X, Zhang X, Dai Y (2011) Preparation, characterization, and photocatalytic properties of silver carbonate. App Surf Sci 257(20):8732–8736

    Article  Google Scholar 

  13. Yu C, Li G, Kumar S, Yang K, ** R (2014) Phase transformation synthesis of novel Ag2O/Ag2CO3 heterostructures with high visible light efficiency in photocatalytic degradation of pollutants. Adv Mater 26(6):892–898

    Article  Google Scholar 

  14. Wu C (2014) Synthesis of Ag2CO3/ZnO nanocomposite with visible light-driven photocatalytic activity. Mater Lett 136:262–264. doi:10.1016/j.matlet.2014.08.074

    Article  Google Scholar 

  15. Feng C, Li G, Ren P, Wang Y, Huang X, Li D (2014) Effect of photo-corrosion of Ag2CO3 on visible light photocatalytic activity of two kinds of Ag2CO3/TiO2 prepared from different precursors. Appl Catal B 158–159:224–232. doi:10.1016/j.apcatb.2014.04.020

    Article  Google Scholar 

  16. Dong H, Chen G, Sun J, Feng Y, Li C, **ong G, Lv C (2014) Highly-effective photocatalytic properties and interfacial transfer efficiencies of charge carriers for the novel Ag2CO3/AgX heterojunctions achieved by surface modification. Dalton Trans 43(19):7282–7289

    Article  Google Scholar 

  17. Park S, Lee JM, Jo YK, Kim IY, Hwang SJ (2014) A facile exfoliation-crystal growth route to multicomponent Ag2CO3/Ag-Ti5NbO14 nanohybrids with improved visible light photocatalytic activity. Dalton Trans 43(27):10566–10573

    Article  Google Scholar 

  18. Dong C, Wu KL, Wei XW, Li XZ, Liu L, Ding TH, Wang J, Ye Y (2014) Synthesis of graphene oxide-Ag2CO3 composites with improved photoactivity and anti-photocorrosion. CrystEngComm 16(4):730–736

    Article  Google Scholar 

  19. Song Y, Zhu J, Xu H, Wang C, Xu Y, Ji H, Wang K, Zhang Q, Li H (2014) Synthesis, characterization and visible-light photocatalytic performance of Ag2CO3 modified by graphene-oxide. J Alloys Compd 592:258–265. doi:10.1016/j.jallcom.2013.12.228

    Article  Google Scholar 

  20. ** W-J, Lee HK, Jeong EH, Park WH, Youk JH (2005) Preparation of polymer nanofibers containing silver nanoparticles by using poly(N-vinylpyrrolidone). Macromol Rapid Commun 26(24):1903–1907. doi:10.1002/marc.200500569

    Article  Google Scholar 

  21. Kong HY, Jang J (2006) One-step fabrication of silver nanoparticle embedded polymer nanofibers by radical-mediated dispersion polymerization. Chem Commun 28:3010–3012. doi:10.1039/b605286j

    Article  Google Scholar 

  22. Mahanta N, Valiyaveettil S (2012) In situ preparation of silver nanoparticles on biocompatible methacrylated poly(vinyl alcohol) and cellulose based polymeric nanofibers. RSC Adv 2:11389–11396. doi:10.1039/c2ra20637d

    Article  Google Scholar 

  23. Song J, Kang H, Lee C, Hwang SH, Jang J (2012) Aqueous synthesis of silver nanoparticle embedded cationic polymer nanofibers and their antibacterial activity. ACS Appl Mater Interfaces 4(1):460–465. doi:10.1021/am201563t

    Article  Google Scholar 

  24. Lu X, Zhao Y, Wang C, We Y (2005) Fabrication of CdS nanorods in PVP fiber matrices by electrospinning. Macromol Rapid Commun 26(16):1325–1329

    Article  Google Scholar 

  25. Yu HC, Jiao Z, Hu H, Lu G, Ye J, Bi Y (2013) Fabrication of Ag3PO4-PAN composite nanofibers for photocatalytic applications. CrystEngComm 15(24):4802–4805

    Article  Google Scholar 

  26. Muktha B, Madras G, Guru Row TN, Scherf U, Patil S (2007) Conjugated polymers for photocatalysis. J Phys Chem B 111(28):7994–7998

    Article  Google Scholar 

  27. Panthi G, Barakat NAM, Al-Deyab SS, El-Newehy M, Pandeya DR, Kim HY (2013) Interior synthesizing of ZnO nanoflakes inside nylon-6 electrospun nanofibers. J Appl Polym Sci 127(3):2025–2032

    Article  Google Scholar 

  28. Choi JS, Leong KW, Yoo HS (2008) In vivo wound healing of diabetic ulcers using electrospun nanofibers immobilized with human epidermal growth factor (EGF). Biomaterials 29(5):587–596

    Article  Google Scholar 

  29. Barakat NAM, Kim BS, Kim HY (2009) Production of smooth and pure nickel metal nanofibers by the electrospinning technique: nanofibers possess splendid magnetic properties. J Phys Chem C 113(2):531–553

    Article  Google Scholar 

  30. Kanjwal MA, Barakat NAM, Sheikh FA, Khil MS, Kim HY (2008) Physiochemical characterizations of nanobelts consisting of three mixed oxides (Co3O4, CuO, and MnO2) prepared by electrospinning technique. J Mater Sci 43(16):5489–5494. doi:10.1007/s10853-008-2835-3

    Article  Google Scholar 

  31. Panthi G, Barakat NAM, Khalil KA, Yousef A, Jeon K-S, Kim HY (2013) Encapsulation of CoS nanoparticles in PAN electrospun nanofibers: effective and reusable catalyst for ammonia borane hydrolysis and dyes photodegradation. Ceram Intl 39(2):1469–1476

    Article  Google Scholar 

  32. Wang X, Ding B, Sun G, Wang M, Yu J (2013) Electro-spinning/netting: a strategy for the fabrication of three-dimensional polymer nano-fiber/nets. Prog Mater Sci 58(8):1173–1243

    Article  Google Scholar 

  33. Yu H, Dong Q, Jiao Z, Wang T, Ma J, Lu G, Bi Y (2014) Ion exchange synthesis of PAN/Ag3PO4 core–shell nanofibers with enhanced photocatalytic properties. J Mater Chem A 2(6):1668–1671

    Article  Google Scholar 

  34. Barakat NAM, Abadirc MF, Sheikh FA, Kanjwal MA, Park SJ, Kim HY (2010) Polymeric nanofibers containing solid nanoparticles prepared by electrospinning and their applications. Chem Eng J 156(2):487–495

    Article  Google Scholar 

  35. Zhang W, Liu J, Wu G (2003) Evolution of structure and properties of PAN precursors during their conversion to carbon fibers. Carbon 41(14):2805–2812

    Article  Google Scholar 

  36. Gallant-Behm CL, Yin HQ, Liu SJ, Heggers JP, Langford RE, Olson ME, Hart DA, Burrell RE (2005) Comparison of in vitro disc diffusion and time kill-kinetic assays for the evaluation of antimicrobial wound dressing efficacy. Wound Repair Regen 13(4):412–421

    Article  Google Scholar 

  37. Li Y, Zhang W, Niu J, Chen Y (2012) Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano 6(6):5164–5173. doi:10.1021/nn300934k

    Article  Google Scholar 

  38. Raghupathi KR, Koodali RT, Manna AC (2011) Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27(7):4020–4028. doi:10.1021/la104825u

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea Government (MEST) (No. 2012R1A2A2A01046086) and National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIP) (No. 2014R1A4A1008140). We thank Mr. Jong-Gyun Kang, Centre for University Research Facility, for taking high-quality TEM images.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mira Park or Hak-Yong Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panthi, G., Park, SJ., Kim, TW. et al. Electrospun composite nanofibers of polyacrylonitrile and Ag2CO3 nanoparticles for visible light photocatalysis and antibacterial applications. J Mater Sci 50, 4477–4485 (2015). https://doi.org/10.1007/s10853-015-8995-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8995-z

Keywords

Navigation