Log in

An analytical approach and experimental confirmation of dislocation–twin boundary interactions in titanium

  • Nanostructured Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The morphology of \( \{ 10\overline{1} 2\} \left\langle {\overline{1} 011} \right\rangle \) deformation twins formed in commercial purity titanium during an initial pass of equal-channel angular pressing was studied by transmission electron microscopy (TEM). The corresponding diffraction patterns show a symmetry line splitting of \( (10\overline{1} 2) \) twin boundaries (TB) which is related to the presence of interfacial defects. A simple modeling for the interaction between non-screw a-slip lattice dislocations (Burgers vector b = \( \frac{1}{3}[\overline{1} \overline{1} 20] \)) and the \( (10\overline{1} 2) \) twin plane is used according to crystallographic geometry and vector conservation. The results show that dislocation dissociation into different Frank partial dislocations on the interfacial plane is more favorable than its transmission to the other side of the interface. The formation of the Frank partials at the TB can produce a small change in the TB misorientation angle and this is consistent with the symmetry line splitting of the \( (10\overline{1} 2) \) twin boundaries observed by TEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yu Q, Shan Z-W, Li J, Huang X, **ao L, Sun J, Ma E (2010) Nature 463:335

    Article  CAS  Google Scholar 

  2. von Mises R, Angew Z (1928) Math Mech 8:161

    Google Scholar 

  3. Yoo MH, Wei CT (1966) Philos Mag 14:573

    Article  CAS  Google Scholar 

  4. Serra A, Bacon DJ (1995) Acta Metall Mater 43:4465

    Article  CAS  Google Scholar 

  5. Serra A, Bacon DJ (1996) Philos Mag A 73:333

    Article  CAS  Google Scholar 

  6. Serra A, Bacon DJ, Pond RC (1999) Acta Mater 47:1425

    Article  CAS  Google Scholar 

  7. Capolungo L, Beyerlein IJ, Tome CN (2009) Scripta Mater 60:32

    Article  CAS  Google Scholar 

  8. Serra A, Bacon DJ, Pond RC (1988) Acta Metall 36:3183

    Article  CAS  Google Scholar 

  9. Serra A, Pond RC, Bacon DJ (1991) Acta Metall Mater 39:1469

    Article  CAS  Google Scholar 

  10. Pond RC, Serra A, Bacon DJ (1999) Acta Mater 47:1441

    Article  CAS  Google Scholar 

  11. Wang YC, ** DH, Li DX, Ye HQ (1996) Philos Mag Lett 74:367

    Article  CAS  Google Scholar 

  12. Kasukabe Y, Yamada JY, Lin PJ, Burill LA (1993) Philos Mag Lett 67:361

    Article  CAS  Google Scholar 

  13. Li YJ, Chen YJ, Walmsley JC, Mathinsen RH, Dumoulin S, Roven HJ (2010) Scripta Mater 62:443

    Article  CAS  Google Scholar 

  14. Iwahashi Y, Wang J, Horita Z, Nemoto M, Langdon TG (1996) Scripta Mater 35:143

    Article  CAS  Google Scholar 

  15. Zhang Y, Alhajeri SN, Figueiredo RB, Gao N, Wang JT, Langdon TG (2011) Mater Sci Forum 667–669:719

    Google Scholar 

  16. Zhang Y, Figueiredo RB, Alhajeri SN, Wang JT, Gao N, Langdon TG (2011) Mater Sci Eng A528:7708

    Google Scholar 

  17. Wu X, Tao N, Hong Y, Liu G, Xu B, Lu J, Lu K (2005) Acta Mater 53:681

    Article  CAS  Google Scholar 

  18. Li YS, Tao NR, Lu K (2008) Acta Mater 56:230

    Article  CAS  Google Scholar 

  19. Partridge PG, Roberts E (1964) Acta Metall 12:1205

    Article  CAS  Google Scholar 

  20. Gharghouri MA, Weatherly GC, Embury JD (1998) Philos Mag A 78:1137

    Article  CAS  Google Scholar 

  21. Christian JW, Mahajan S (1995) Prog Mater Sci 39:1

    Article  Google Scholar 

  22. Li B, Ma E (2009) Phys Rev Lett 103:035503

    Article  CAS  Google Scholar 

  23. Zhang XY, Li B, Wu XL, Zhu YT, Ma Q, Liu Q, Wang PT, Horstemeyer MF (2012) Scripta Mater 67:862

    Article  CAS  Google Scholar 

  24. ** Z-H, Gumbsch P, Ma E, Albe K, Lu K, Hahn H, Gleiter H (2006) Scripta Mater 54:1163

    Article  CAS  Google Scholar 

  25. ** Z-H, Gumbsch P, Albe K, Ma E, Lu K, Gleiter H, Hahn H (2008) Acta Mater 56:1126

    Article  CAS  Google Scholar 

  26. Wu ZX, Zhang YW, Srolovitz DJ (2009) Acta Mater 57:4508

    Article  CAS  Google Scholar 

  27. Niewczas M (2010) Acta Mater 58:5848

    Article  CAS  Google Scholar 

  28. Wang J, Hirth JP, Tomé CN (2009) Acta Mater 57:5521

    Article  CAS  Google Scholar 

  29. Yoo MH, Lee JK (1991) Philos Mag A 63:987

    Article  CAS  Google Scholar 

  30. Serra A, Bacon DJ (1991) Philos Mag A 63:1001

    Article  CAS  Google Scholar 

  31. Yoo MH, Morris JR, Ho KM, Agnew SR (2002) Metall Mater Trans A 33:813

    Google Scholar 

  32. Capolungo L, Beyerlein IJ, Tomé CN (2009) Scripta Mater 60:32

    Article  CAS  Google Scholar 

  33. Wang J, Hoagland RG, Hirth JP, Capolungo L, Beyerlein IJ, Tomé CN (2009) Scripta Mater 61:903

    Article  CAS  Google Scholar 

  34. Zhu YT, Wu XL, Liao XZ, Narayan J, Kecskés LJ, Mathaudhu SN (2011) Acta Mater 59:812

    Article  CAS  Google Scholar 

  35. Zhang LC, Wang JG, Chen GL, Sauthoff G (2000) Mater Lett 45:320

    Article  CAS  Google Scholar 

  36. Cahn RW (1954) Adv Phys 3:363

    Article  Google Scholar 

  37. Howell PR, Nilsson JO, Dunlop GL (1978) Philos Mag A38:39

    Google Scholar 

  38. Hirth JP, Lothe J (1982) Theory of dislocations, 2nd edn. Wiley, New York

    Google Scholar 

  39. Wang J, Beyerlein IJ, Tome CN (2010) Scripta Mater 63:741

    Article  CAS  Google Scholar 

  40. Ni S, Wang YB, Liao XZ, Figueiredo RB, Li HQ, Ringer SP, Langdon TG, Zhu YT (2012) Acta Mater 60:3181

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in China by the Natural Science Foundation of China under Grant Nos. 51171080 and 51101026; and in the U.K. by ICUK (Innovation China-UK) under Project Soton 15; and by the European Research Council under ERC Grant Agreement No. 267464-SPDMETALS. The authors are grateful to Shenyang National Laboratory for Materials Science of China for TEM observations and Drs. Pengfei Xue, Yong Zhang, and Chuanshi Hong for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Dong, Z.S., Wang, J.T. et al. An analytical approach and experimental confirmation of dislocation–twin boundary interactions in titanium. J Mater Sci 48, 4476–4483 (2013). https://doi.org/10.1007/s10853-013-7284-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7284-y

Keywords

Navigation