Log in

Magnetic properties of Fe78.4Si9.5B9Cu0.6Nb2.5 nanocrystalline alloy powder cores

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The microstructure and morphology of nanocrystalline Fe78.4Si9.5B9Cu0.6Nb2.5 alloy powders prepared by ball milling technique were characterized by X-ray diffraction and scanning electron microscopy studies. The effective permeability (μe), quality factor (Q), DC bias property, and core losses of the corresponding powder cores were tested using low capacitance resonator meter and B–H analyzer in the range of 1–1000 kHz. The results show that the relative density and compression strength of the powder cores increased with increasing particle size. Powder cores from large size particles (150–300 μm) were found to exhibit higher μe and core loss, but lower Q level when compared to samples of small size ones (5–40 μm). Moreover, the μe of powder cores with large particles reached a peak value with the addition of 2 wt% glass binder. The Q value was also found to be proportional to the binder content except 10 wt%, while its peak position was shifted toward higher frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Goldman A (1999) Handbook of modern ferromagnetic materials. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

  2. McHenry ME, Willard MA, Laughlin DE (1999) Prog Mater Sci 44:291

    Article  CAS  Google Scholar 

  3. Hilzinger HR (1985) IEEE Trans Magn 21:2020

    Article  Google Scholar 

  4. Gungunes H, Yasar E, Dikici M (2011) Int J Min Met Mater 18:192

    Article  CAS  Google Scholar 

  5. Yoshizawa Y, Oguma S, Yamauchi K (1988) J Appl Phys 64:6044

    Article  CAS  Google Scholar 

  6. Herzer G (1989) IEEE Trans Magn 25:3327

    Article  CAS  Google Scholar 

  7. Hasiak M, Ciurzyńska WH, Yamashiro Y (2000) Mater Sci Eng A 293:261

    Article  Google Scholar 

  8. Guo M, Wang YG, Miao XF (2011) J Mater Sci 46:1680. doi:10.1007/s10853-010-4985-3

    Article  CAS  Google Scholar 

  9. Shivaee HA, Golikand AN, Hosseini HRM, Asgari M (2010) J Mater Sci 45:546. doi:10.1007/s10853-009-3972-z

    Article  CAS  Google Scholar 

  10. Zhu Z, Huang Y, Jiang D, Ma G, Song H (2009) J Wuhan Univ Technol Mater Sci Ed 24:114

    Article  Google Scholar 

  11. Fujii H, Yardley VA, Matsuzaki T, Tsurekawa S (2008) J Mater Sci 43:3837. doi:1007/s10853-007-2220-7

    Article  CAS  Google Scholar 

  12. Nowosielski R, Wysłocki JJ, Wnuk I, Gramatyka P (2006) J Mater Process Technol 175:324

    Article  CAS  Google Scholar 

  13. Srinivas M, Majumdar B, Akhtar D, Srivastava AP, Srivastava D (2011) J Mater Sci 46:616. doi:10.1007/s10853-010-4770-3

    Article  CAS  Google Scholar 

  14. Xu H, He KY, Qiu YQ, Wang ZJ, **ao XS (2000) Mater Sci Eng A 286:197

    Article  Google Scholar 

  15. Cho EK, Kwon HT, Cho EM, Song YS, Sohn KY, Park WW (2007) Mater Sci Eng A 449–451:368

    Google Scholar 

  16. Kim GH, Noh TH, Choi GB, Kim KY (2003) J Appl Phys 93:7211

    Article  CAS  Google Scholar 

  17. Choi HY, Ahn SJ, Noh TH (2004) Phys Status Solidi (a) 201:1879

    Article  CAS  Google Scholar 

  18. Müller M, Novy A, Brunner M (1999) J Magn Magn Mater 196–197:357

    Article  Google Scholar 

  19. Mazaleyrat F, Varga LK (2000) J Magn Magn Mater 215–216:253

    Article  Google Scholar 

  20. Ziębowicz B, Szewieczek D, Dobrzański LA (2006) J Mater Process Technol 175:457

    Article  Google Scholar 

  21. Legg VE (1936) Bell Syst Tech J 15:39

    Google Scholar 

  22. Yamauchi K, Yoshizawa Y (1995) Nanostruct Mater 6:247

    Article  CAS  Google Scholar 

  23. Magnetics® technical bulletin no. KMS-S1, Kool Mu: a magnetic material for power choke (Butler, 1988)

  24. Magnetics® literature MPP-400 6E, molypermalloy powder cores for filter an inductor applications (Butler, 1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. S. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, J., Cui, Y.F., Liu, H.S. et al. Magnetic properties of Fe78.4Si9.5B9Cu0.6Nb2.5 nanocrystalline alloy powder cores. J Mater Sci 46, 7567–7572 (2011). https://doi.org/10.1007/s10853-011-5731-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5731-1

Keywords

Navigation