Log in

Study of the effect of prolonged magnetic stirring on the physico-chemical surface properties of nanometric transition alumina

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This article reports the study of a transition nanometric alumina both as such and after prolonged magnetic stirring in bi-distilled water. Stirring was effective in inducing a significant reduction of starting particles agglomeration and modification of the surface properties of the material. The formation of an Al(OH)3 (gibbsite) phase after magnetic stirring in water was detected by means of XRD on powdered samples. Correspondingly, Infra Red spectrum of magnetically stirred alumina outgassed at 150 °C showed a band at ca. 3300 cm−1, ascribable to the hydroxide phase, which decomposes at higher temperature. Differential thermal analysis and thermogravimetry also showed a different thermal behaviour between the two materials, in that magnetically stirred alumina presents a broad endothermic peak at about 280 °C accompanied by an abrupt mass loss (ca. 0.5% of the initial weight), due to dehydration of the hydroxide phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lippens BC, Steggerda JJ (1970) In: Linsen BG (ed) Physical and chemical aspects of adsorbents and catalysts. Academic Press, New York, p 171

    Google Scholar 

  2. Morterra C, Magnacca G (1996) Catal Today 27:497 (and references therein)

    Article  CAS  Google Scholar 

  3. Mayo MJ (1996) Int Mater Rev 41:85

    CAS  Google Scholar 

  4. Teleki A, Wengeler R, Wengeler L, Nirschl H, Pratsinin SE (2008) Powder Technol 181:292

    Article  CAS  Google Scholar 

  5. Bowen P, Carry C (2002) Powder Technol 128:248

    Article  CAS  Google Scholar 

  6. Ma J, Lim LC (2002) J Eur Ceram Soc 22:2197

    Article  CAS  Google Scholar 

  7. Bowen P, Carry C, Luxembourg D, Hofmann H (2005) Powder Technol 157:100

    Article  CAS  Google Scholar 

  8. Bloch B, Ravi BG, Chaim R (2000) Mater Lett 42:61

    Article  CAS  Google Scholar 

  9. Palmero P, Bonelli B, Lomello F, Garrone E, Montanaro L (2009) J Therm Anal Calorim 97:223

    Article  CAS  Google Scholar 

  10. Palmero P, Lombardi M, Montanaro L, Azar M, Chevalier J, Garnier V (2009) Int J Appl Ceram Technol 6:420

    Article  CAS  Google Scholar 

  11. Lefèvre G, Duc M, Lepeut P, Caplain R, Fédoroff M (2002) Langmuir 18:7530

    Article  Google Scholar 

  12. Knözinger H, Ratnasamy P (1978) Catal Rev Sci Eng 17:31

    Article  Google Scholar 

  13. Euzen P, Raybaud P, Krokidis X, Toulhoat H, Le Loarer JL, Jolivet JP, Froidefond C (2002) In: Schüth F, Sing KSW, Weitkamp J (eds) Handbook of porous solids, vol 3. Wiley-VCH, Weinheim, p 1591

    Chapter  Google Scholar 

  14. Huang CC, Kono HO (1989) Ind Eng Chem Res 28:910

    Article  CAS  Google Scholar 

  15. Mieth JA, Huang YJ, Schwarz JA (1988) J Colloid Interface Sci 123:366

    Article  CAS  Google Scholar 

  16. Santacesaria E, Carra S, Adami I (1977) Ind Eng Chem Prod Res Dev 16(1):41

    Article  CAS  Google Scholar 

  17. Digne M, Sautet P, Raybaud P, Euzen P, Toulhoat H (2004) J Catal 226:54

    Article  CAS  Google Scholar 

  18. Chen Y, Hyldtoft J, Jacobsen CJH, Nielsen OF (1995) Spectrochim Acta A 51:2161

    Article  ADS  Google Scholar 

  19. Dyer C, Hendra PJ, Forsling W, Ranheimer M (1993) Spectrochim Acta A 49:691

    Article  ADS  Google Scholar 

  20. Laiti E, Persson P, Öhman LO (1998) Langmuir 14:825

    Article  CAS  Google Scholar 

  21. Carrier X, Marceau E, Lambert J-F, Che M (2007) J Colloid Interface Sci 308:429

    Article  CAS  PubMed  Google Scholar 

  22. Reid CB, Forrester JS, Goodshaw HJ, Kisi EH, Suaning GJ (2008) Ceram Int 34:1551

    Article  CAS  Google Scholar 

  23. **e Z-P, Lu J-W, Huang Y, Cheng Y-B (2003) Mater Lett 57:2501

    Article  CAS  Google Scholar 

  24. Sen S, Ram ML, Roy S, Sarkar BK (1999) J Mater Res 14:841

    Article  CAS  ADS  Google Scholar 

  25. Gaydardzhiev S, Ay P (2006) J Mater Sci 41:5257. doi:10.1007/s10853-006-0354-7

    Article  CAS  ADS  Google Scholar 

  26. Zhao W, Yang D, Song J, Yang Z, Liang C, Xu M, Xu T (2004) J Wuhan Univ Technol 19:4

    CAS  Google Scholar 

  27. Roelofs F, Vogelsberger W (2006) J Colloid Interface Sci 303:450

    Article  CAS  PubMed  Google Scholar 

  28. Kao H-C, Wei W-C (2000) J Am Ceram Soc 83:362

    Article  CAS  Google Scholar 

  29. Azar M, Palmero P, Lombardi M, Garnier V, Montanaro L, Fantozzi G, Chevalier J (2008) J Eur Ceram Soc 28:1121

    Article  CAS  Google Scholar 

  30. Hofmeister H, Kodderitzsch P, Dutta J (1998) J Non-Crystal Solids 232:182

    Article  ADS  Google Scholar 

  31. Iordan A, Zaki MI, Kappenstein C (2004) Phys Chem Chem Phys 6:2502

    Article  CAS  Google Scholar 

  32. Tsyganenko AA, Filimonov VN (1972) Spectrosc Lett 5:477

    Article  CAS  ADS  Google Scholar 

  33. Tsyganenko AA, Filimonov VN (1973) J Mol Struct 19:579

    Article  CAS  ADS  Google Scholar 

  34. Peri JB (1965) J Phys Chem 69:231

    Article  CAS  Google Scholar 

  35. Busca G, Lonrenzelli V, Sanchez Escribano V, Guidetti R (1991) J Catal 131:167

    Article  CAS  Google Scholar 

  36. Wang S-L, Johnston CT (2000) Am Mineral 85:739

    CAS  Google Scholar 

  37. Zecchina A, Areán CO (1996) Chem Rev 25(3):187 (and references therein)

    Article  CAS  Google Scholar 

  38. Bonelli B, Onida B, Chen JD, Galarneau A, Di Renzo F, Fajula F, Garrone E (2004) Micropor Mesopor Mater 67:95

    Article  CAS  Google Scholar 

  39. Lercher JA, Gründling C, Eder-Mirth G (1996) Catal Today 27:353

    Article  CAS  Google Scholar 

  40. Cairon O, Chevreau T, Lavalley J-C (1998) J Chem Soc Faraday Trans 94:3039

    Article  CAS  Google Scholar 

  41. Hadjiivanov KI, Vayssilov GN (2007) Adv Catal 47:307

    Article  Google Scholar 

  42. Areán CO, Manoilova OV, Tsiganenko AA, Palomino GT, Mentruit MP, Geobaldo F, Garrone E (2001) Eur J Inorg Chem 7:1739

    Google Scholar 

  43. Morterra C, Bolis V, Magnacca G (1994) Langmuir 10:1812

    Article  CAS  Google Scholar 

  44. Bolis V, Cerrato G, Magnacca G, Morterra C (1998) Thermochim Acta 321:63

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Bonelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonelli, B., Palmero, P., Lomello, F. et al. Study of the effect of prolonged magnetic stirring on the physico-chemical surface properties of nanometric transition alumina. J Mater Sci 45, 6115–6125 (2010). https://doi.org/10.1007/s10853-010-4698-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4698-7

Keywords

Navigation