Log in

Stress relaxation behavior of nano-hydroxyapatite reinforced poly(vinyl alcohol) gel composites as biomaterial

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nano-hydroxyapatite reinforced poly(vinyl alcohol) (nano-HA/PVA) gel composites has been proposed as a promising biomaterial to replace diseased or damaged articular cartilage. In this paper, the stress relaxation mechanism of nano-HA/PVA gel composites was investigated. The various influence factors on the stress relaxation behavior of the composites were also evaluated. The results showed that the relaxation mechanism of the composites was mainly determined by the synergistic effect of two stress relaxation mechanisms analogous to those of the natural articular cartilage and the polymer. The relaxation rate of the composites increased with the rise of strain ratio, but it declined with the relaxation time. Under the given strain ratio, the relaxation rate of the composite presented a trend of rising first and then falling with the increasing amount of nano-HA content. Contrarily, the normalized equilibrium relaxation modulus of the composites decreased first and then presented increasing trend with the rise of nano-HA content. Furthermore, the normalized equilibrium relaxation modulus of the composites decreased with the rise of strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Coleman RM, Case ND, Guldberg RE (2007) Biomaterials 28:2077

    Article  CAS  PubMed  Google Scholar 

  2. Sinha A, Das G, Sharma BK, Roy RP, Pramnick AK, Nayar S (2007) Mater Sci Eng C 27:70

    Article  CAS  Google Scholar 

  3. Huang ZH, Dong YS, Chu CL, Lin PH (2008) Mater Lett 62(19):3376

    Article  CAS  Google Scholar 

  4. Pan YS, **ong DS, Ma RY (2007) Wear 262:1021

    Article  CAS  Google Scholar 

  5. Covert RJ, Ott RD, Ku DN (2003) Wear 255:1064

    Article  CAS  Google Scholar 

  6. Suciu AN, Iwatsubo T, Matsuda M (2004) JSME C 47(1):199

    Article  ADS  Google Scholar 

  7. Stammen JA, Williams S, Ku DN (2001) Biomaterials 22:799

    Article  CAS  PubMed  Google Scholar 

  8. Huang HY, Liu ZH, Tao F (1997) Clin Neurol Neurosurg 99:20

    Article  Google Scholar 

  9. Ahn ES, Gleason NJ, Nakahira A (2001) Nano Lett 1(3):149

    Article  CAS  ADS  Google Scholar 

  10. Zhang XL, Dai KR, Tang TT (2000) Bone Joint Inj 15(1):30

    Google Scholar 

  11. Wang KY, Dai KR, Xue WD (1995) J Appl Biomech 10(4):224

    Google Scholar 

  12. Zhang XL, Dai KR, Tang TT (2000) Shanghai Med 23(12):734

    Google Scholar 

  13. Dai M, Dai KR (1998) Chin J Orthop 18(8):484

    Google Scholar 

  14. Pan YS, **ong DS, Chen XL (2007) J Mater Sci 42(13):5129. doi:10.1007/s10853-006-1264-4

    Article  CAS  Google Scholar 

  15. Pan YS, **ong DS, Gao F (2008) J Mater Sci Mater Med 19:1963

    Article  CAS  PubMed  Google Scholar 

  16. Pan YS, **ong DS (2009) J Mater Sci Mater Med 20:1291

    Article  CAS  PubMed  Google Scholar 

  17. Pan YS, **ong DS (2009) Wear 266(7–8):699

    Article  CAS  Google Scholar 

  18. Weng XS, Zhang JG, Zhang J, Qiu GX (1999) Acta Acad Med Sin 21(1):53

    CAS  Google Scholar 

  19. Wayne JS (1992) ASME Adv Bioeng 22:585

    Google Scholar 

  20. Wang CB, Hung CT, Mow VC (2001) Biomechanics 34(1):75

    Article  CAS  Google Scholar 

  21. Mow VC, Kuei SC, Law WC et al (1980) J Biochem Eng 102(1):73

    CAS  Google Scholar 

  22. Mow VC, Holmes MH, Lai WM (1984) J Biomech 17(5):377

    Article  CAS  PubMed  Google Scholar 

  23. Rosa R, Finizia A, Claudio DR et al (2004) Macromolecules 37:1921

    Article  ADS  Google Scholar 

  24. Machidaa Y, Kurokia S, Kanekiyoa M et al (2000) J Mol Struct 554:81

    Article  ADS  Google Scholar 

  25. Nebahat D, Kalyon DM, Birinci E (2006) Colloids Surf B 48:42

    Article  Google Scholar 

  26. Jiang XL, Jiang T, Cheng SY (2001) Polym Mater Sci Eng 17(4):116

    CAS  MathSciNet  Google Scholar 

  27. Ji B, Gao J, Ma YZ, Gu ZQ, Liu GQ, Xue HH (2005) J Univ Sci Technol Bei**g 27(5):589

    CAS  ADS  Google Scholar 

Download references

Acknowledgement

Research reported in the paper was funded by the Natural Science Research of key projects of Anhui Provincial Universities (Project No. KJ2010A099).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusong Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, Y., **ong, D. Stress relaxation behavior of nano-hydroxyapatite reinforced poly(vinyl alcohol) gel composites as biomaterial. J Mater Sci 45, 5495–5501 (2010). https://doi.org/10.1007/s10853-010-4607-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4607-0

Keywords

Navigation