Log in

Martensitic phase transformation in single crystal Co5Ni2Ga3

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The magnetic, thermal, and transport properties of martensitic phase transformation in single crystal Co5Ni2Ga3 have been investigated. The single crystal Co5Ni2Ga3 shows martensitic transformation at 251 K on cooling and 254 K on warming. Large jumps in the temperature-dependent resistance curve, temperature-dependent magnetization curve, and temperature-dependent thermal conductivity curve are observed at martensitic transformation temperature (TM). Negative magnetoresistance due to spin disorder scattering was observed in Co5Ni2Ga3 single crystal at all temperature range. The temperature-dependent negative magnetoresistance shows a peak at TM, which indicates that the spin disorder increases in the process of phase transition. Co5Ni2Ga3 sample exhibits a temperature dependence of thermal conductivity κ(T) (dκ/dT > 0) due to electrons being above temperature 100 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. de Groot RA, Mueller FM, van Engen PG, Buschow KHJ (1983) Phys Rev Lett 50:2024. Ishida S, Masaki T, Fujii S, Asano S (1998) Physica B 245:1. Fujii S, Sugimura S, Ishida S, Asano S (1990) J Phys Condens Matter 2:8583. doi:https://doi.org/10.1088/0953-8984/2/43/004

    CAS  Google Scholar 

  2. Webster PJ, Ziebeck KRA, Town SL, Peak MS (1984) Philos Mag B 49:295. Fujita A, Fukamichi K, Gejima F, Kainuma R, Isshida K (2001) Appl Phys Lett 77:3054

  3. Furuya Y, Hagood NW, Kimura H, Watanabe T (1998) Mater Trans JIM 39:1248

    Article  CAS  Google Scholar 

  4. Wuttig M, Li J, Craciunescu C (2001) Scr Mater 44:2393. doi:https://doi.org/10.1016/S1359-6462(01)00939-3

    Article  CAS  Google Scholar 

  5. Oikawa K, Wulff L, Iijima T, Gejima F, Ohmori T, Fujita A, Fukamichi K, Kainuma R, Isshida K (2001) Appl Phys Lett 79:3290. doi:https://doi.org/10.1063/1.1418259

    Article  CAS  Google Scholar 

  6. Liu ZH, Zhang M, Cui YT, Zhou YQ, Wang WH, Wu GH, Zhang XX, **ao G (2003) Appl Phys Lett 82:424. Liu ZH, Hu HN, Liu GD, Cui YT, Zhang M, Chen JL, Wu GH (2004) Phys Rev B 69:134415. doi:https://doi.org/10.1103/PhysRevB.69.134415

  7. Chen F, Wang HB, Zheng YF, Cai W, Zhao LC (2005) J Mater Sci 40(1):219. doi:https://doi.org/10.1007/s10853-005-5712-3

    Article  CAS  Google Scholar 

  8. Pirge G, Hyatt CV, Altintas S (2004) J Mater Sci Proc Tech 155–156:1266. doi:https://doi.org/10.1016/j.jmatprotec.2004.04.225

    Article  Google Scholar 

  9. Meng FB, Li YX, Liu HY, Qu JP, Zhang M, Chen JL, Wu GH (2004) J Mater Sci Tech 20(6):697

    CAS  Google Scholar 

  10. Li YX, Liu HY, Meng FB, Yan LQ, Liu GD, Dai XF, Zhang M, Liu ZH, Chen JL, Wu GH (2004) Appl Phys Lett 84(18):3594. doi:https://doi.org/10.1063/1.1737481

    Article  CAS  Google Scholar 

  11. Sozinov A, Likhachev AA, Lanska N, Ullakko K (2002) Appl Phys Lett 80:1746. doi:https://doi.org/10.1063/1.1458075

    Article  CAS  Google Scholar 

  12. Cherechukin AA, Dikshtein IE, Ermakov DI, Glebov AV, Koledov VV, Kosolapov DA, Shavrov VG, Tulaikova AA, Krasnoperov EP, Takagi T (2001) Phys Lett A 291:175. doi:https://doi.org/10.1016/S0375-9601(01)00688-0

    Article  CAS  Google Scholar 

  13. Wang WH, Chen JL, Liu ZH, Zhan WS (2002) Appl Phys Lett 80:634. doi:https://doi.org/10.1063/1.1447003

    Article  Google Scholar 

  14. Wu GH, Yu CH, Meng LQ, Chen JL, Yang FM, Qi SR, Zhan WS, Wang Z, Zheng YF, Zhao LC (1999) Appl Phys Lett 75:2990. doi:https://doi.org/10.1063/1.125211

    Article  CAS  Google Scholar 

  15. Zhu FQ, Yang FY, Chien CL, Ritchie L, **ao G, Wu GH (2005) J Magn Magn Mater 288:79. doi:https://doi.org/10.1016/j.jmmm.2004.08.025

    Article  CAS  Google Scholar 

  16. Hordequin C, Ristoiu D, Ranno L (2000) Eur Phys J B 16(2):287. doi:https://doi.org/10.1007/s100510070230

    Article  CAS  Google Scholar 

  17. de Groot RA, Mueller FM, van Engen PG, Buschow KHJ (1983) Phys Rev Lett 50:2024. doi:https://doi.org/10.1103/PhysRevLett.50.2024

    Article  Google Scholar 

  18. Otto MJ, van Woerden RAM, van der Valk PJ (1989) J Phys Condens Matter 1:2341. doi:https://doi.org/10.1088/0953-8984/1/13/007

    Article  CAS  Google Scholar 

  19. Oestreich J, Probst U, Rrichardt F, Bucher E (2003) J Phys Condens Matter 15:635. doi:https://doi.org/10.1088/0953-8984/15/4/304

    Article  CAS  Google Scholar 

Download references

Acknowledgements

In this paper was supported by a grant from the Science & Technology Commission, Chongqing, China (Project No. CSTC 2006BB2024 and SWNUF 2005002). XX Zhang would like to thank the support from HKUST grant 6059/02E.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, P., Chen, K., Wu, G.H. et al. Martensitic phase transformation in single crystal Co5Ni2Ga3. J Mater Sci 43, 4226–4229 (2008). https://doi.org/10.1007/s10853-008-2611-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2611-4

Keywords

Navigation