Log in

Re-initialization-Free Level Set Method via Molecular Beam Epitaxy Equation Regularization for Image Segmentation

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Variational level set method has become a powerful tool in image segmentation due to its ability to handle complex topological changes and maintain continuity and smoothness in the process of evolution. However its evolution process can be unstable, which results in over flatted or over sharpened contours and segmentation failure. To improve the accuracy and stability of evolution, we propose a high-order level set variational segmentation method integrated with molecular beam epitaxy (MBE) equation regularization. This method uses the crystal growth in the MBE process to limit the evolution of the level set function. Thus can avoid the re-initialization in the evolution process and regulate the smoothness of the segmented curve and keep the segmentation results independent of the initial curve selection. It also works for noisy images with intensity inhomogeneity, which is a challenge in image segmentation. To solve the variational model, we derive the gradient flow and design a scalar auxiliary variable scheme, which can significantly improve the computational efficiency compared with the traditional semi-implicit and semi-explicit scheme. Numerical experiments show that the proposed method can generate smooth segmentation curves, preserve segmentation details and obtain robust segmentation results of small objects. Compared to existing level set methods, this model is state-of-the-art in both accuracy and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Algorithm 1

References

  1. Guo, X., Xue, Y., Wu, C.: Effective two-stage image segmentation: a new non-lipschitz decomposition approach with convergent algorithm. J. Math. Imaging Vis. 63, 356–379 (2021). https://doi.org/10.1007/s10851-020-01001-3

    Article  MathSciNet  Google Scholar 

  2. Lambert, Z., Le Guyader, C.: About the incorporation of topological prescriptions in cnns for medical image semantic segmentation. J. Math. Imaging Vis. (2024). https://doi.org/10.1007/s10851-024-01172-3

    Article  Google Scholar 

  3. Li, D., Zhang, G., Wu, Z., Yi, L.: An edge embedded marker-based watershed algorithm for high spatial resolution remote sensing image segmentation. IEEE Trans. Image Process. 19(10), 2781–2789 (2010). https://doi.org/10.1109/TIP.2010.2049528

    Article  MathSciNet  Google Scholar 

  4. Falcone, M., Paolucci, G., Tozza, S.: A high-order scheme for image segmentation via a modified level-set method. SIAM J. Imaging Sci. 13(1), 497–534 (2020). https://doi.org/10.1137/18M1231432

    Article  MathSciNet  Google Scholar 

  5. Bowden, A., Sirakov, N.M.: Active contour directed by the Poisson gradient vector field and edge tracking. J. Math. Imaging Vis. 63(6), 665–680 (2021). https://doi.org/10.1007/s10851-021-01017-3

    Article  MathSciNet  Google Scholar 

  6. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076

    Article  Google Scholar 

  7. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000). https://doi.org/10.1109/34.868688

    Article  Google Scholar 

  8. Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 13(6), 583–598 (1991). https://doi.org/10.1109/34.87344

    Article  Google Scholar 

  9. Tai, X.-C., Deng, L.-J., Yin, K.: A multigrid algorithm for maxflow and min-cut problems with applications to multiphase image segmentation. J. Sci. Comput. 87(3), 101–22 (2021). https://doi.org/10.1007/s10915-021-01458-3

    Article  MathSciNet  Google Scholar 

  10. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001). https://doi.org/10.1109/83.902291

    Article  Google Scholar 

  11. Yang, W., Huang, Z., Zhu, W.: Image segmentation using the Cahn-Hilliard equation. J. Sci. Comput. 79(2), 1057–1077 (2019). https://doi.org/10.1007/s10915-018-00899-7

    Article  MathSciNet  Google Scholar 

  12. Cardelino, J., Caselles, V., Bertalmío, M., Randall, G.: A contrario selection of optimal partitions for image segmentation. SIAM J. Imaging Sci. 6(3), 1274–1317 (2013). https://doi.org/10.1137/11086029X

    Article  MathSciNet  Google Scholar 

  13. Luo, S., Tai, X.-C., Glowinski, R.: Convex object(s) characterization and segmentation using level set function. J. Math. Imaging Vis. 64(1), 68–88 (2022). https://doi.org/10.1007/s10851-021-01056-w

    Article  MathSciNet  Google Scholar 

  14. Gao, W., Bertozzi, A.: Level set based multispectral segmentation with corners. SIAM J. Imaging Sci. 4(2), 597–617 (2011). https://doi.org/10.1137/100799538

    Article  MathSciNet  Google Scholar 

  15. Liu, C., Qiao, Z., Zhang, Q.: Two-phase segmentation for intensity inhomogeneous images by the Allen–Cahn local binary fitting model. SIAM J. Sci. Comput. 44(1), 177–196 (2022). https://doi.org/10.1137/21M1421830

    Article  MathSciNet  Google Scholar 

  16. Zhang, W., Wang, X., You, W., Chen, J., Dai, P., Zhang, P.: Resls: Region and edge synergetic level set framework for image segmentation. IEEE Trans. Image Process. 29, 57–71 (2020). https://doi.org/10.1109/TIP.2019.2928134

    Article  MathSciNet  Google Scholar 

  17. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988). https://doi.org/10.1016/0021-9991(88)90002-2

    Article  MathSciNet  Google Scholar 

  18. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997). https://doi.org/10.1023/A:1007979827043

    Article  Google Scholar 

  19. Li, C., Kao, C.-Y., Gore, J.C., Ding, Z.: Minimization of region-scalable fitting energy for image segmentation. IEEE Trans. Image Process. 17(10), 1940–1949 (2008). https://doi.org/10.1109/TIP.2008.2002304

    Article  MathSciNet  Google Scholar 

  20. Estellers, V., Zosso, D., Lai, R., Osher, S., Thiran, J.-P., Bresson, X.: Efficient algorithm for level set method preserving distance function. IEEE Trans. Image Process. 21(12), 4722–4734 (2012). https://doi.org/10.1109/TIP.2012.2202674

    Article  MathSciNet  Google Scholar 

  21. Osher, S., Fedkiw, R.: Level set methods and dynamic implicit surfaces 153, 273 (2003). https://doi.org/10.1007/b98879

  22. Chopp, D.L.: Computing Minimal Surfaces Via Level Set Curvature Flow 106, 77–91 (1993). https://doi.org/10.1006/jcph.1993.1092

  23. Peng, D., Merriman, B., Osher, S., Zhao, H., Kang, M.: A pde-based fast local level set method. J. Comput. Phys. 155(2), 410–438 (1999). https://doi.org/10.1006/jcph.1999.6345

    Article  MathSciNet  Google Scholar 

  24. Sussman, M., Fatemi, E.: An efficient, interface-preserving level set redistancing algorithm and its application to interfacial incompressible fluid flow. SIAM J. Sci. Comput. 20(4), 1165–1191 (1999). https://doi.org/10.1137/S1064827596298245

    Article  MathSciNet  Google Scholar 

  25. Estellers, V., Zosso, D., Lai, R., Osher, S., Thiran, J.-P., Bresson, X.: Efficient algorithm for level set method preserving distance function. IEEE Trans. Image Process. 21(12), 4722–4734 (2012). https://doi.org/10.1109/TIP.2012.2202674

    Article  MathSciNet  Google Scholar 

  26. Li, C., Xu, C., Gui, C., Fox, M.D.: Level set evolution without re-initialization: a new variational formulation. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 1, pp. 430–4361 (2005). https://doi.org/10.1109/CVPR.2005.213

  27. Li, C., Xu, C., Gui, C., Fox, M.D.: Distance regularized level set evolution and its application to image segmentation. IEEE Trans. Image Process. 19(12), 3243–3254 (2010). https://doi.org/10.1109/TIP.2010.2069690

    Article  MathSciNet  Google Scholar 

  28. **e, X.: Active contouring based on gradient vector interaction and constrained level set diffusion. IEEE Trans. Image Process. 19(1), 154–164 (2010). https://doi.org/10.1109/TIP.2009.2032891

  29. Zhang, K., Zhang, L., Song, H., Zhang, D.: Reinitialization-free level set evolution via reaction diffusion. IEEE Trans. Image Process. 22(1), 258–271 (2013). https://doi.org/10.1109/TIP.2012.2214046

    Article  MathSciNet  Google Scholar 

  30. Li, C., Huang, R., Ding, Z., Gatenby, J.C., Metaxas, D.N., Gore, J.C.: A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Trans. Image Process. 20(7), 2007–2016 (2011). https://doi.org/10.1109/TIP.2011.2146190

    Article  MathSciNet  Google Scholar 

  31. Li, H., Guo, W., Liu, J., Cui, L., **e, D.: Image segmentation with adaptive spatial priors from joint registration. SIAM J. Imaging Sci. 15(3), 1314–1344 (2022). https://doi.org/10.1137/21M1444874

    Article  MathSciNet  Google Scholar 

  32. Moldovan, D., Golubovic, L.: Interfacial coarsening dynamics in epitaxial growth with slope selection. Phys. Rev. E 61, 6190–6214 (2000). https://doi.org/10.1103/PhysRevE.61.6190

    Article  Google Scholar 

  33. Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 61(3), 474–506 (2019). https://doi.org/10.1137/17M1150153

    Article  MathSciNet  Google Scholar 

  34. Cheng, Q., Shen, J., Yang, X.: Highly efficient and accurate numerical schemes for the epitaxial thin film growth models by using the SAV approach. J. Sci. Comput. 78(3), 1467–1487 (2019). https://doi.org/10.1007/s10915-018-0832-5

    Article  MathSciNet  Google Scholar 

  35. Yao, W., Shen, J., Guo, Z., Sun, J., Wu, B.: A total fractional-order variation model for image super-resolution and its SAV algorithm. J. Sci. Comput. 82(3), 81–18 (2020). https://doi.org/10.1007/s10915-020-01185-1

    Article  MathSciNet  Google Scholar 

  36. Li, B., Liu, J.-G.: Thin film epitaxy with or without slope selection. Eur. J. Appl. Math. 14(6), 713–743 (2003). https://doi.org/10.1017/S095679250300528X

    Article  MathSciNet  Google Scholar 

  37. Chambolle, A.: Mathematical problems in image processing. ICTP Lecture Notes, vol. II, p. 94. Abdus Salam International Centre for Theoretical Physics, Trieste (2000). Inverse problems in image processing and image segmentation: some mathematical and numerical aspects, Available electronically at http://www.ictp.trieste.it/~pub_off/lectures/vol2.html

  38. Apoung Kamga, J.-B., Després, B.: CFL condition and boundary conditions for DGM approximation of convection–diffusion. SIAM J. Numer. Anal. 44(6), 2245–2269 (2006). https://doi.org/10.1137/050633159

    Article  MathSciNet  Google Scholar 

  39. Zhao, H.: A fast swee** method for eikonal equations. Math. Comp. 74(250), 603–627 (2005). https://doi.org/10.1090/S0025-5718-04-01678-3

    Article  MathSciNet  Google Scholar 

  40. Wali, S., Li, C., Imran, M., Shakoor, A., Basit, A.: Level-set evolution for medical image segmentation with alternating direction method of multipliers. Signal Process. 211, 109105 (2023). https://doi.org/10.1016/j.sigpro.2023.109105

    Article  Google Scholar 

  41. Chen, Y., Tagare, H.D., Thiruvenkadam, S., Huang, F., Wilson, D., Gopinath, K.S., Briggs, R.W., Geiser, E.A.: Using prior shapes in geometric active contours in a variational framework. Int. J. Comput. Vision 50, 315–328 (2002). https://doi.org/10.1023/A:1020878408985

    Article  Google Scholar 

  42. Ortiz, M., Repetto, E.A., Si, H.: A continuum model of kinetic roughening and coarsening in thin films. J. Mech. Phys. Solids 47(4), 697–730 (1999). https://doi.org/10.1016/S0022-5096(98)00102-1

  43. Zhang, L.: Dirac delta function of matrix argument. Internat. J. Theoret. Phys. 60(7), 2445–2472 (2021). https://doi.org/10.1007/s10773-020-04598-8

    Article  MathSciNet  Google Scholar 

  44. Li, B., Ma, S., Schratz, K.: A semi-implicit exponential low-regularity integrator for the Navier–Stokes equations. SIAM J. Numer. Anal. 60(4), 2273–2292 (2022). https://doi.org/10.1137/21M1437007

    Article  MathSciNet  Google Scholar 

  45. Ethier, M., Bourgault, Y.: Semi-implicit time-discretization schemes for the bidomain model. SIAM J. Numer. Anal. 46(5), 2443–2468 (2008). https://doi.org/10.1137/070680503

    Article  MathSciNet  Google Scholar 

  46. Heideman, M.T., Johnson, D.H., Burrus, C.S.: Gauss and the history of the fast Fourier transform. Arch. Hist. Exact Sci. 34(3), 265–277 (1985). https://doi.org/10.1007/BF00348431

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China (U21B2075), National Key R &D Program of China (2023YFC2205900, 2023YFC2205903), the National Natural Science Foundation of China (12171123, 12271130, 12371419), Natural Sciences Foundation of Heilongjiang Province (ZD2022A001), Self-Planned Task of State Key Laboratory of Robotics and System (HIT) (SKLRS201801A05), the Fundamental Research Funds for the Central Universities (2022FRFK060020, 2022FRFK060014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengzhu Shi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, F., Sun, J., Shi, S. et al. Re-initialization-Free Level Set Method via Molecular Beam Epitaxy Equation Regularization for Image Segmentation. J Math Imaging Vis (2024). https://doi.org/10.1007/s10851-024-01205-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10851-024-01205-x

Keywords

Mathematics Subject Classification

Navigation