Log in

TMACH-1,2-HOPO, a versatile tripodal metal chelator: complexation, solution thermodynamics, spectroscopic and DFT studies

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

A new tripodal siderophore-mimic hexadentate chelator, N,N’,N’’-(((1R,3R)-cyclohexane-1,3,5-triyl)tris(methylene))tris(1-hydroxy-6-oxo-1,6-dihydropyridine-2 carboxamide), (TMACH-1,2-HOPO) containing three 1,2-hydroxypyridinone units attached to a cyclohexane ring through amide linkage at 1,3 and 5 positions have been designed, synthesized, and characterized by FT-IR, 1H NMR, 13C NMR, ESI-MS, and electronic spectroscopy. The solution thermodynamics and photophysical properties of the ligand and its metal complexes (M = La3+, Gd3+, and Lu3+) were investigated experimentally and theoretically in an aqueous medium. The pKa values for the ligand were found to be 8.32, 6.86, and 5.45. In an aqueous solution, the ligand formed complexes of the type MLH3, MLH2, MLH, and Mion. Additionally, it formed three hydrolyzed species, MLH− 1, MLH− 2, and MLH− 3 at a higher pH. DFT studies were performed, which support the experimental results. The nature of bonding between the lanthanide ions and the ligand was explained by NBO, Morokuma Ziegler energy decomposition analysis (ETS-NOCV).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Caro, P.: Rare Earths. Editorial Complutense, Newyork (1998)

    Google Scholar 

  2. Buss, J.L., Neuzil, J., Ponka, P.: Oxidative stress mediates toxicity of pyridoxal isonicotinoyl hydrazone analogs. Arch. Biochem. Biophys. 421, 1–9 (2004). https://doi.org/10.1016/j.abb.2003.09.044

    Article  CAS  PubMed  Google Scholar 

  3. Bruice, T.C., Tsubouchi, A., Dempcy, R.O., Olson, L.P.: One- and two-metal ion catalysis of the hydrolysis of adenosine 3’-alkyl phosphate esters. Models for one- and two-metal ion catalysis of RNA hydrolysis. J. Am. Chem. Soc. 118, 9867–9875 (1996). https://doi.org/10.1021/ja9607300

    Article  CAS  Google Scholar 

  4. Oh, S.J., Choi, Y.S., Hwangbo, S., Bae, S.C., Ku, J.K., Park, J.W.: Structure and phosphodiesterase activity of Bis-Tris coordinated lanthanide(III) complexes. Chem. Commun. 20, 2189–2190 (1998). https://doi.org/10.1039/a806021e

    Article  Google Scholar 

  5. Santos, M.A., Marques, S.M., Chaves, S.: Hydroxypyridinones as privileged chelating structures for the design of medicinal drugs. Coord. Chem. Rev. 256, 240–259 (2012). https://doi.org/10.1016/j.ccr.2011.08.008

    Article  CAS  Google Scholar 

  6. Persy, V.P., Behets, G.J., Bervoets, A.R., De Broe, M.E., D’Haese, P.C.: Lanthanum: A safe phosphate binder. Semin. Dial 19, 195–199 (2006). https://doi.org/10.1111/j.1525-139X.2006.00169.x

    Article  PubMed  Google Scholar 

  7. Persy, V.P., Behets, G.J., De Broe, M.E., D’Haese, P.C.: Management of hyperphosphatemia in patients with end-stage renal disease: Focus on lanthanum carbonate. Int. J. Nephrol. Renovasc Dis. 2, 1–8 (2009). https://doi.org/10.2147/ijnrd.s5007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rasaneh, S., Rajabi, H., Babaei, M.H., Daha, F.J., Salouti, M.: Radiolabeling of trastuzumab with 177Lu via DOTA, a new radiopharmaceutical for radioimmunotherapy of breast cancer. Nucl. Med. Biol. 36, 363–369 (2009). https://doi.org/10.1016/j.nucmedbio.2009.01.015

    Article  CAS  PubMed  Google Scholar 

  9. Datta, A., Raymond, K.N.: Gd-hydroxypyridinone (HOPO)-based high-relaxivity magnetic resonance imaging (MRI) contrast agents. Acc. Chem. Res. 42, 938–947 (2009). https://doi.org/10.1021/ar800250h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jocher, C.J., Moore, E.G., Xu, J., Avedano, S., Botta, M., Aime, S., Raymond, K.N.: 1,2-Hydroxypyridonates as contrast agents for magnetic resonance imaging: TREN-1,2-HOPO. Inorg. Chem. 46, 9182–9191 (2007). https://doi.org/10.1021/ic700985j

    Article  CAS  PubMed  Google Scholar 

  11. Wei, C., Yao, X., Sun, B., Cai, Z., Zhao, Z., Chen, M., Wei, H., Liu, Z., Bian, Z., Huang, C.: Evaporable luminescent lanthanide complexes based on novel tridentate ligand. J. Rare Earths. 35, 7–14 (2017). https://doi.org/10.1016/S1002-0721(16)60166-7

    Article  CAS  Google Scholar 

  12. Moore, E.G., Samuel, A.P.S., Raymond, K.N.: From antenna to assay: Lessons learned in lanthanide luminescence. Acc. Chem. Res. 42, 542–552 (2009). https://doi.org/10.1021/ar800211j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. He, M., Fan, M., Peng, Z., Wang, G.: An overview of hydroxypyranone and hydroxypyridinone as privileged scaffolds for novel drug discovery. Eur. J. Med. Chem. 221, 113546 (2021). https://doi.org/10.1016/j.ejmech.2021.113546

    Article  CAS  PubMed  Google Scholar 

  14. Chaves, S., Piemontese, L., Hiremathad, A., Santos, M.A.: Hydroxypyridinone derivatives: A fascinating class of chelators with therapeutic applications - an update. Curr. Med. Chem. 25, 97–112 (2017). https://doi.org/10.2174/0929867324666170330092304

    Article  CAS  Google Scholar 

  15. Liu, Z.D., Hider, R.C.: Design of clinically useful iron(III)-selective chelators, Med. Res. Rev. 22, 26–64 (2002). https://doi.org/10.1002/med.1027

    Article  CAS  Google Scholar 

  16. Tedeschi, C., Azéma, J., Gornitzka, H., Tisnès, P., Picard, C.: A solid-state study of eight-coordinate lanthanide(III) complexes (Ln = Eu, Gd, Tb, Dy) with 1-hydroxy-2-pyridinone. Dalt. Trans. 9, 1738–1745 (2003). https://doi.org/10.1039/b300159h

    Article  CAS  Google Scholar 

  17. Yantasee, W., Fryxell, G.E., Lin, Y., Wu, H., Raymond, K.N., Xu, J.: Hydroxypyridinone functionalized self-assembled monolayers on nanoporous silica for sequestering lanthanide cations. J. Nanosci. Nanotechnol. 5, 527–529 (2005). https://doi.org/10.1166/jnn.2005.096

    Article  CAS  PubMed  Google Scholar 

  18. Sturzbecher-Hoehne, M., Choi, T.A., Abergel, R.J.: Hydroxypyridinonate complex stability of group (IV) metals and tetravalent f-block elements: The key to the next generation of chelating agents for radiopharmaceuticals. Inorg. Chem. 54, 3462–3468 (2015). https://doi.org/10.1021/acs.inorgchem.5b00033

    Article  CAS  PubMed  Google Scholar 

  19. Abergel, R.J., Durbin, P.W., Kullgren, B., Ebbe, S.N., Xu, J., Chang, P.Y., Bunin, D.I., Blakely, E.A., Bjornstad, K.A., Rosen, C.J., Shuh, D.K., Raymond, K.N.: Biomimetic actinide chelators: An update on the preclinical development of the orally active hydroxypyridonate decorporation agents 3,4,3-LI(1,2-HOPO) and 5-LIO(ME-3,2-HOPO). Health Phys. 99, 401–407 (2010). https://doi.org/10.1097/HP.0b013e3181c21273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Workman, D.G., Hunter, M., Wang, S., Brandel, J., Hubscher, V., Dover, L.G., Tétard, D.: The influence of linkages between 1-hydroxy-2(1H)-pyridinone coordinating groups and a tris(2-aminoethyl)amine core in a novel series of synthetic hexadentate iron(III) chelators on antimicrobial activity. Bioorg. Chem. 95, 103465 (2020). https://doi.org/10.1016/j.bioorg.2019.103465

    Article  CAS  PubMed  Google Scholar 

  21. Dash, D., Baral, M., Kanungo, B.K.: Synthesis of a new tetradentate chelator with 1-Hydoroxy-2(1H)-pyridinone (HOPO) as chelating unit: Interaction with Fe (III), solution thermodynamics and DFT studies. J. Mol. Struct. 1222, 128796 (2020). https://doi.org/10.1016/j.molstruc.2020.128796

    Article  CAS  Google Scholar 

  22. Silverstein, R.W., Bassler, G.C.: Spectrometric identification of organic compounds. J. Chem. Educ. 39, 546–553 (1962). https://doi.org/10.1021/ed039p546

    Article  CAS  Google Scholar 

  23. Pretsch, E., Buhlmann, P., Badertscher, M.: Tables of Spectral Data. Springer, Berlin (2009). https://doi.org/10.1007/978-3-540-93810-1

    Book  Google Scholar 

  24. Moore, E.G., Xu, J., Dodani, S.C., Jocher, C.J., Daléo, A., Seitz, M., Raymond, K.N.: 1-methyl-3-hydroxy-pyridin-2-one complexes of near infra-red emitting lanthanides: Efficient sensitization of Yb(III) and nd(III) in aqueous solution. Inorg. Chem. 49, 4156–4166 (2010). https://doi.org/10.1021/ic902219t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. D’Aléo, A., Xu, J., Moore, E.G., Jocher, C.J., Raymond, K.N.: Aryl-bridged 1-hydroxypyridin-2-one: Sensitizer ligands for Eu(III). Inorg. Chem. 47, 6109–6111 (2008). https://doi.org/10.1021/ic8003189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Qiu, D.H., Huang, Z.L., Zhou, T., Shen, C., Hider, R.C.: In vitro inhibition of bacterial growth by iron chelators. FEMS Microbiol. Lett. 314, 107–111 (2011). https://doi.org/10.1111/j.1574-6968.2010.02153.x

    Article  CAS  PubMed  Google Scholar 

  27. Zhou, Y.J., Zhang, M.X., Hider, R.C., Zhou, T.: In vitro antimicrobial activity of hydroxypyridinone hexadentate-based dendrimeric chelators alone and in combination with norfloxacin. FEMS Microbiol. Lett. 355, 124–130 (2014). https://doi.org/10.1111/1574-6968.12465

    Article  CAS  PubMed  Google Scholar 

  28. Dash, D., Baral, M., Kanungo, B.K.: Development of a Flexible Tripodal Hydroxypyridinone Ligand with Cyclohexane Framework: Complexation, Solution Thermodynamics, Spectroscopic and DFT Studies. ChemistrySelect 6, 12165–12181 (2021). https://doi.org/10.1002/slct.202102962

    Article  CAS  Google Scholar 

  29. Chaves, S., Mendonça, A.C., Marques, S.M., Prata, M.I., Santos, A.C., Martins, A.F., Geraldes, C.F.G.C., Santos, M.A.: A gallium complex with a new tripodal tris-hydroxypyridinone for potential nuclear diagnostic imaging: Solution and in vivo studies of 67Ga- labeled species. J. Inorg. Biochem. 105, 31–38 (2011). https://doi.org/10.1016/j.**orgbio.2010.09.012

    Article  CAS  PubMed  Google Scholar 

  30. Golcu, A., Tumer, M., Demirelli, H., Wheatley, R.A.: Cd(II) and Cu(II) complexes of polydentate Schiff base ligands: Synthesis, characterization, properties and biological activity. Inorganica Chim. Acta. 358, 1785–1797 (2005). https://doi.org/10.1016/j.ica.2004.11.026

    Article  CAS  Google Scholar 

  31. Werner, F.J., Kozhukh, J., Botta, M., Moore, E.G., Avedano, S., Aime, S., Raymond, K.N.: 1,2-hydroxypyridonate/terephthalamide complexes of gadolinium(lll): Synthesis, stability, relaxivity, and water exchange properties. Inorg. Chem. 48(2009), 277–286 (1995). https://doi.org/10.1021/ic801730u

    Article  CAS  Google Scholar 

  32. Mcdonald, F.C., Applefield, R.C., Halkides, C.J., Reibenspies, J.H., Hancock, R.D.: A thermodynamic and crystallographic study of complexes of the highly preorganized ligand 8-hydroxyquinoline-2-carboxylic acid. Inorganica Chimica Acta 361(7), 1937–1946 (2008). https://doi.org/10.1016/j.ica.2007.10.004

    Article  CAS  Google Scholar 

  33. Hasegawa, M., Ohmagari, H., Tanaka, H., Machida, K.: Luminescence of lanthanide complexes: From fundamental to prospective approaches related to water- and molecular-stimuli. J. Photochem. Photobiol C Photochem. Rev. 50, 100484 (2022). https://doi.org/10.1016/j.jphotochemrev.2022.100484

    Article  CAS  Google Scholar 

  34. Baerends, A.L.Y.E.J., Ziegler, T., Atkins, A.J., Autschbach, J., Baseggio, O., Bashford, D., Bérces, A., Bickelhaupt, F.M., Bo, C., Boerrigter, P.M., Cavallo, L., Daul, C., Chong, D.P., Chulhai, D.V., Deng, L., Dickson, R.M., Dieterich, J.M., Ellis, D.E., van Faassen, M., Fan, L.: ADF2017, ADF2017. (2017). htttp://www.scm.com

  35. Grabowski, J.W., Fleming, D.G., Vogt, E.W.: The (p,d) reaction at intermediate beam energies. I. plane-wave born approximation (semi-analytical) calculations. Can. J. Phys. 54, 870–888 (1976). https://doi.org/10.1139/p76-103

    Article  CAS  Google Scholar 

  36. Geerlings, P., De Proft, F., Langenaeker, W.: Conceptual density functional theory. Chem. Rev. 103, 1793–1873 (2003). https://doi.org/10.1021/cr990029p

    Article  CAS  PubMed  Google Scholar 

  37. Govindarajan, M., Karabacak, M., Periandy, S., Tanuja, D.: Spectroscopic (FT-IR, FT-Raman, UV and NMR) investigation and NLO, HOMO-LUMO, NBO analysis of organic 2,4,5-trichloroaniline. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 97, 231–245 (2012). https://doi.org/10.1016/j.saa.2012.06.014

    Article  CAS  Google Scholar 

  38. Pearson, R.G.: Chemical hardness and density functional theory. J. Chem. Sci. 117, 369–377 (2005). https://doi.org/10.1007/BF02708340

    Article  CAS  Google Scholar 

  39. Pearson, R.G.: Recent advances in the concept of hard and soft acids and bases. J. Chem. Educ. 64, 561–567 (1987). https://doi.org/10.1021/ed064p561

    Article  CAS  Google Scholar 

  40. Pearson, R.G.: Absolute Electronegativity and Absolute hardness of Lewis acids and bases. J. Am. Chem. Soc. 107, 6801–6806 (1985). https://doi.org/10.1021/ja00310a009

    Article  CAS  Google Scholar 

  41. Parr, R.G., Pearson, R.G.: Absolute hardness: Companion parameter to Absolute Electronegativity. J. Am. Chem. Soc. 105, 7512–7516 (1983). https://doi.org/10.1021/ja00364a005

    Article  CAS  Google Scholar 

  42. Choudhary, V.K., Bhatt, A.K., Dash, D., Sharma, N.: DFT calculations on molecular structures, HOMO–LUMO study, reactivity descriptors and spectral analyses of newly synthesized diorganotin(IV) 2-chloridophenylacetohydroxamate complexes. J. Comput. Chem. 40, 2354–2363 (2019). https://doi.org/10.1002/jcc.26012

    Article  CAS  PubMed  Google Scholar 

  43. Helm, L., Merbach, A.E.: Water exchange on metal ions: Experiments and simulations. Coord. Chem. Rev. 187, 151–181 (1999). https://doi.org/10.1016/S0010-8545(99)90232-1

    Article  CAS  Google Scholar 

  44. Cotton, S.A.: Establishing coordination numbers for the lanthanides in simple complexes. Comptes Rendus Chim. 8, 129–145 (2005). https://doi.org/10.1016/j.crci.2004.07.002

    Article  CAS  Google Scholar 

  45. Konings, M.S., Raymond, K.N., Dow, W.C., Love, D.B., Quay, S.C., Rocklage, S.M.: Gadolinium Complexation by a new DTPA-Amide ligand. Amide Oxygen Coordination. Inorg. Chem. 29, 1488–1491 (1990). https://doi.org/10.1021/ic00333a009

    Article  CAS  Google Scholar 

  46. Hirshfeld, F.L.: Bonded-atom fragments for describing molecular charge densities. Theor. Chim. Acta. 44, 129–138 (1977). https://doi.org/10.1007/BF00549096

    Article  CAS  Google Scholar 

  47. Fonseca Guerra, C., Handgraaf, J.W., Baerends, E.J., Bickelhaupt, F.M.: Voronoi Deformation Density (VDD) charges: Assessment of the Mulliken, Bader, Hirshfeld, Weinhold, and VDD methods for Charge Analysis. J. Comput. Chem. 25, 189–210 (2004). https://doi.org/10.1002/jcc.10351

    Article  CAS  PubMed  Google Scholar 

  48. Graphical, Abstract: Angew. Chem. Int. Ed. 35/ Angew. Chemie Int. Ed. 42 (2003) 4112–4120. (2003). https://doi.org/10.1002/anie.200390573

  49. Verma, R., Baral, M., Kanungo, B.K.: Computational and experimental studies on the effect of conformational flexibility on bonding and photophysics of a triaza-macrocycle tripod. J. Incl. Phenom. Macrocycl. Chem. 101, 253–273 (2021). https://doi.org/10.1007/s10847-021-01084-4

    Article  CAS  Google Scholar 

Download references

Funding

One of the author (Dibyajit Dash) is grateful to the management of Sant Longowal Institute of Engineering and Technology, Longowal, for financial support.

Author information

Authors and Affiliations

Authors

Contributions

Dibyajit Dash: Experimental work, manuscript preparation, Shalini Singh: Verification and validation of Data, Minati Baral and B K Kanungo: Concept, Supervision and Editing.

Corresponding author

Correspondence to B. K. Kanungo.

Ethics declarations

Conflict of interest

The authors state that they will have no competing commercial interests or personal relationships that might have influenced the research presented in this publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Details of experimental section, HRMS data, IR, 1H NMR, 13C NMR, spectrophotometric titration curves of ligand with lanthanide ions and the energy level diagrams of LH3 and its deprotonated species are given in Figure S1, Figure S2, Figure S3, Figure S4, Figure S5 and Figure S6 respectively. The calculated and experimentally obtained chemical shifts, stretching frequencies are presented in Table S1, whereas the DFT simulated thermodynamic parameters, bond energy, HOMO and LUMO energy of neutral and deprotonated ligand species are available in Table S2 of the Supporting information.

Supplementary material 1 (DOCX 2726.6 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dash, D., Singh, S., Baral, M. et al. TMACH-1,2-HOPO, a versatile tripodal metal chelator: complexation, solution thermodynamics, spectroscopic and DFT studies. J Incl Phenom Macrocycl Chem 104, 109–127 (2024). https://doi.org/10.1007/s10847-024-01221-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-024-01221-9

Keywords

Navigation