Log in

Fine scale population structure of hoverfly pollinator, Eristalis arbustorum: an integrative study

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Determination of the factors influencing the population structure and adaptive tolerance to environmental pressures of the synanthropic hoverfly Eristalis arbustorum is of essential importance in understanding how pollinator populations could respond to climate change or ecosystem management. We addressed the issue of connectivity among conspecific populations sampled in Bosnia and Herzegovina. Twenty environmental factors, mitochondrial DNA sequences of the cytochrome c oxidase subunit I gene (COI mtDNA), allele frequencies at allozyme loci and wing traits (size and shape) were compared for characterization of population structure and environmental niches. Additionally, patterns of within-individual asymmetry (fluctuating asymmetry; FA) in wing size and shape within and among conspecific populations were studied. In line with the overall similarity of the environmental factors extracted for our study sites, the results of COI mtDNA diversity and STRUCTURE allozyme data provide evidence for shallow differentiation among conspecific populations. In contrast, geo-referenced Bayesian clustering methods (BAPS and GENELAND) and population-based approaches (pairwise FST values and AMOVA) indicate that the dispersal potential of E. arbustorum may be limited across the study area. Along with a significant FA in wing size and shape, a consistent level of FA regardless of urban/rural sampling origin is an indication of the great potential of E. arbustorum for local adaptation, because increased FA levels can be considered to be a way of expression of phenotypic variation and, hence, may contribute to adaptive responses in populations facing changing environments. Thus, by using a combined genetic-morphological approach, we significantly contributed to the understanding of the fine-scale genetic structure of the synanthropic generalist pollinator E. arbustorum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arnfield AJ (2003) Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int J Climatol 23:1–26

    Article  Google Scholar 

  • Bai Y, Dong J-J, Guan D-L, **e J-Y, Xu S-Q (2016) Geographic variation in wing size and shape of the grasshopper Trilophidia annulata (Orthoptera: Oedipodidae): morphological trait variations follow an ecogeographical rule. Sci Rep 6:32680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldock KCR, Goddard MA, Hicks DM, Kunin WE, Mitschunas N, Osgathorpe LM, Potts SG, Robertson KM, Scott AV, Stone GN, Vaughan IP, Memmott J (2015) Where is the UK’s pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proc R Soc B 282:20142849

    Article  PubMed  PubMed Central  Google Scholar 

  • Bates AJ, Sadler JP, Fairbrass AJ, Falk SJ, Hale JD, Matthews TJ (2011) Changing bee and hoverfly pollinator assemblages along an urban-rural gradient. PLoS ONE 6:e23459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beasley DE, Bonisoli-Alquati A, Mousseau TA (2013) The use of fluctuating asymmetry as a measure of environmentally induced developmental instability: a meta-analysis. Ecol Indic 30:218–226

    Article  Google Scholar 

  • Bitner-Mathé BC, Klaczko LB (1999) Heritability, phenotypic, and genetic correlations of size and shape of Drosophila mediopunctata wings. Heredity 83:688–696

    Article  PubMed  Google Scholar 

  • Brassel KE, Reif D (1979) A procedure to generate Thiessen polygons. Geogr Anal 325:31–36

    Google Scholar 

  • Carter AJR, Weier TM, Houle D (2009) The effect of inbreeding on fluctuating asymmetry of wing veins in two laboratory strains of Drosophila melanogaster. Heredity 102:563–572

    Article  CAS  PubMed  Google Scholar 

  • Carvajal TM, Hernandez LFT, Ho HT, Menard G, Cuenca MG, Orantia BMC, Estrada CR, Viacrusis KM, Amalin DM, Watanabe K (2016) Spatial analysis of wing geometry in dengue vector mosquito, Aedes aegypti (L.) (Diptera: Culicidae), populations in Metropolitan Manila, Philippines. J Vector Dis 53:127–135

    Google Scholar 

  • Clarke GM (1995) Relationships between fluctuating asymmetry and fitness: how good is the evidence? Conserv Biol 2:146–149

    Article  Google Scholar 

  • Conner JK, Hartl DL (2004) A primer to ecological genetics. Sinauer Associates, Inc., Sunderland

    Google Scholar 

  • Corander J, Marttinen P (2006) Bayesian identification of admixture events using multilocus molecular markers. Mol Ecol 15:2833–2843

    Article  PubMed  Google Scholar 

  • Corander J, Waldmann P, Sillanpää MJ (2003) Bayesian analysis of genetic differentiation between populations. Genetics 163:367–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corander J, Waldmann P, Marttinen P, Sillanpää MJ (2004) BAPS 2: enhanced possibilities for the analysis of genetic population structure. Bioinformatics 20:2363–2369

    Article  CAS  PubMed  Google Scholar 

  • Corander J, Marttinen P, Sirén J, Tang J (2008) Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinform 9:539

    Article  CAS  Google Scholar 

  • De Buck N (1990) Bloembezoek en bestuivingsecologie van Zweefvliegen (Diptera, Syrphidae) in het bijzonder voor België. Studiedocumenten van het K.B.I.N, Brussel

    Google Scholar 

  • Deguines N, Julliard R, de Flores M, Fontaine C (2012) The whereabouts of flower visitors: contrasting land-use preferences revealed by a country-wide survey based on citizen science. PLoS ONE 7:e4582

    Article  CAS  Google Scholar 

  • Dryden IL, Mardia KV (1998) Statistical shape analysis. Wiley, Chichester

    Google Scholar 

  • Dujardin JP (2011) Modern morphometrics of medically important insects. In: Tibayrenc M (ed) Genetics and evolution of infectious disease. Elsevier, Burlington, pp 473–501

    Chapter  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francuski L, Milankov V (2015) Assessing the spatial population structure and heterogeneity in the dronefly. J Zool 297:286–300

    Article  Google Scholar 

  • Francuski L, Ludoški J, Vujić A, Milankov V (2009) Wing geometric morphometric inferences on species delimitation and intraspecific divergent units in the Merodon ruficornis group (Diptera, Syrphidae) from the Balkan Peninsula. Zool Sci 26:301–308

    Article  Google Scholar 

  • Francuski L, Matić I, Ludoški J, Milankov V (2011) Temporal pattern of genetic and phenotypic variation of epidemiologically important species Eristalis tenax. Med Vet Entomol 25:135–147

    Article  PubMed  Google Scholar 

  • Francuski L, Djurakic M, Ståhls G, Milankov V (2014) Landscape genetics and wing morphometrics show a lack of structuring across island and coastal populations of the drone fly in the Mediterranean. J Zool 292:156–169

    Article  Google Scholar 

  • Gaggiotti OE, Lange O, Rassmann K, Gliddon C (1999) A comparison of two indirect methods for estimating average levels of gene flow using microsatellite data. Mol Ecol 8:1513–1520

    Article  CAS  PubMed  Google Scholar 

  • Gatter W, Schmid U (1990) Wanderungen der Schwebfligen (Diptera, Syrphidae) am Randecker Maar. Spixiana 15:1–100

    Google Scholar 

  • González-Varo JP, Biesmeijer JC, Bommarco R, Potts SG, Schweiger O, Smith HG, Steffan-Dewenter I, Szentgyörgyi H, Woyciechowski M, Vilà M (2013) Combined effects of global change pressures on animal-mediated pollination. Trends Ecol Evol 28:524–530

    Article  PubMed  Google Scholar 

  • Guillot G, Mortier F, Estoup A (2005) GENELAND: a computer package for landscape genetics. Mol Ecol Notes 5:712–715

    Article  CAS  Google Scholar 

  • Guillot G, Santos F, Estoup A (2008) Analysing georeferenced population genetics data with Geneland: a new algorithm to deal with null alleles and a friendly graphical user interface. Bioinformatics 24:1406–1407

    Article  CAS  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Res 41:95–98

    CAS  Google Scholar 

  • Hall DM, Camilo GR, Tonietto RK, Ollerton J, Ahrné K, Arduser M, Ascher JS, Baldock KCR, Fowler R, Frankie G, Goulson D, Gunnarsson B, Hanley ME, Jackson JI, Langellotto G, Lowenstein D, Minor ES, Philpott SM, Potts SG, Sirohi MH, Spevak EM, Stone GN, Threlfall CG (2017) The city as a refuge for insect pollinators. Conserv Biol 31:24–29

    Article  PubMed  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:3–9

    Google Scholar 

  • Heal JR (1981) Colour patterns of Syrphidae: III. Sexual dimorphism in Eristalis arbustorum. Ecol Entomol 6:119–127

    Article  Google Scholar 

  • Hennig EI, Ghazoul J (2012) Pollinating animals in the urban environment. Urban Ecosyst 15:149–166

    Article  Google Scholar 

  • Hijmans RJ, Guarino L, Cruz M, Rojas E (2001) Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Plant Genet Resour C 127:15–19

    Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hippa H, Nielsen TR, van Steenis J (2001) The West Palearctic species of the genus Eristalis Latreille (Diptera, Syrphidae). Norw J Entomol 48:289–327

    Google Scholar 

  • Jones EL, Leather SR (2012) Invertebrates in urban areas: a review. Eur J Entomol 109:463–478

    Article  Google Scholar 

  • Juste J, López-González C, Strauss RE (2001) Analysis of asymmetries in the African fruit bats Eidolon helvum and Rousettus egyptiacus (Mammalia: Megachiroptera) from islands of the Gulf of Guinea. II. Integration and levels of multivariate fluctuating asymmetry across a geographical range. J Evol Biol 14:672–680

    Article  Google Scholar 

  • Klecka J, Hadrava J, Biella P, Akter A (2018) Flower visitation by hoverflies (Diptera: Syrphidae) in a temperate plant-pollinator network. PeerJ 6:e6025

    Article  PubMed  PubMed Central  Google Scholar 

  • Klingenberg CP (2011) MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour 11:353–357

    Article  PubMed  Google Scholar 

  • Klingenberg CP, McIntyre GS (1998) Geometric morphometrics of developmental instability: analysing patterns of fluctuating asymmetry with Procrustes methods. Evolution 52:1363–1375

    Article  PubMed  Google Scholar 

  • Klingenberg CP, Barluenga M, Meyer A (2002) Shape analysis of symmetric structures: quantifying variation among individuals and asymmetry. Evolution 56:1909–1920

    Article  PubMed  Google Scholar 

  • Knierim U, Van Dongen S, Forkman B, Tuyttens FAM, Spinka M, Campo JL, Weissengruber GE (2007) Fluctuating asymmetry as an animal welfare indicator—a review of methodology and validity. Physiol Behav 92:398–421

    Article  CAS  PubMed  Google Scholar 

  • Knouft JH, Losos JB, Glor RE, Kolbe JJ (2006) Phylogenetic analysis of the evolution of the niche in lizards of the Anolis sagrei group. Ecology 87:29–38

    Article  Google Scholar 

  • Kölliker-Ott UM, Blows MW, Hoffmann AA (2003) Are wing size, wing shape and asymmetry related to field fitness to Trichogramma egg parasitoids? Oikos 100:563–573

    Article  Google Scholar 

  • Leaché AD (2011) Multi-locus estimates of population structure and migration in a fence lizard hybrid zone. PLoS ONE 6:e25827

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leary RF, Allendorf FW (1989) Fluctuating asymmetry as an indicator of stress: implications for conservation biology. Trends Ecol Evol 4:214–217

    Article  CAS  PubMed  Google Scholar 

  • Lens L, Van Dongen S, Kark S, Matthysen E (2002a) Fluctuating asymmetry as an indicator of fitness: can we bridge the gap between studies? Biol Rev 77:27–38

    Article  PubMed  Google Scholar 

  • Lens L, Van Dongen S, Matthysen E (2002b) Fluctuating asymmetry as an early warning system in the critically endangered Taita Thrush. Conserv Biol 16:479–487

    Article  Google Scholar 

  • Lucas A, Bodger O, Brosi BJ, Ford CR, Forman DW, Greig C, Hegarty M, Neyland PJ, de Vere N (2018) Generalisation and specialisation in hoverfly (Syrphidae) grassland pollen transport networks revealed by DNA metabarcoding. J Anim Ecol 87:1008–1021

    Article  PubMed  PubMed Central  Google Scholar 

  • Ludoški J, Lj Francuski, Vujić A, Milankov V (2008) The Cheilosia canicularis group (Diptera: Syrphidae): species delimitation and evolutionary relationships based on wing geometric morphometrics. Zootaxa 1825:40–50

    Article  Google Scholar 

  • Ludoški J, Djurakic M, Ståhls G, Milankov V (2012) Patterns of asymmetry in wing traits of three island and one continental population of the Merodon albifrons (Diptera, Syrphidae) species from Greece. Evol Ecol Res 14:933–950

    Google Scholar 

  • Ludoški J, Djurakic M, Pastor B, Martínez-Sánchez AI, Rojo S, Milankov V (2014) Phenotypic variation of the housefly, Musca domestica: amounts and patterns of wing shape asymmetry in wild populations and laboratory colonies. Bull Entomol Res 104:35–47

    Article  PubMed  Google Scholar 

  • Luxbacher AM, Knouft JH (2009) Assessing concurrent patterns of environmental niche and morphological evolution among species of horned lizards (Phrynosoma). J Evol Biol 22:1669–1678

    Article  CAS  PubMed  Google Scholar 

  • Manel S, Schwartz M, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197

    Article  Google Scholar 

  • Manel S, Berthoud F, Bellemain E, Gaudeul M, Luikart G, Swenson JE, Waits LP, Taberlet P (2007) A new individual-based spatial approach for identifying genetic discontinuities in natural populations. Mol Ecol 16:2031–2043

    Article  CAS  PubMed  Google Scholar 

  • Markow TA (1995) Evolutionary ecology and developmental instability. Annu Rev Entomol 40:105–120

    Article  CAS  Google Scholar 

  • Matta BP, Bitner-Mathé BC (2004) Genetic architecture of wing morphology in Drosophila simulans and an analysis of temperature effects on genetic parameter estimates. Heredity 93:330–341

    Article  CAS  PubMed  Google Scholar 

  • McIntyre NE (2000) Ecology of urban arthropods: a review and a call to action. Ann Entomol Soc Am 93:825–835

    Article  Google Scholar 

  • McKinney ML (2004) Measuring floristic homogenization by non-native plants in North America. Global Ecol Biogeogr 13:47–53

    Article  Google Scholar 

  • Milankov V, Ludoški J, Ståhls G, Stamenković J, Vujić A (2009) High molecular and phenotypic diversity in the Merodon avidus complex (Diptera, Syrphidae): cryptic speciation in a diverse insect taxon. Zool J Linn Soc 155:819–833

    Article  Google Scholar 

  • Milankov V, Ludoški J, Lj Francuski, Ståhls G, Vujić A (2013) Genetic and phenotypic diversity patterns in Merodon albifrons Meigen, 1822 (Diptera, Syrphidae): evidence of intraspecific spatial and temporal structuring. Biol J Linn Soc 110:257–280

    Article  Google Scholar 

  • Miller MP (2005) ALLELES IN SPACE (AIS): computer software for the joint analysis of interindividual spatial and genetic information. J Hered 96:722–724

    Article  CAS  PubMed  Google Scholar 

  • Monmonier MS (1973) Maximum-difference barriers: an alternative numerical regionalization method. Geogr Anal 5:245–261

    Article  Google Scholar 

  • Munstermann LE (1979) Isozymes of Aedes aegypti: Phenotypes, linkage, and use of genetic analysis of sympatric population in East Africa. PhD dissertation, University of Notre Dame

  • Nouvellet P, Ramirey-Sierra MJ, Domonteil E, Gourbière S (2011) Effects of genetic factors and infection status on wing morphology of Triatoma dimidiata species complex in Yucatán peninsula, Mexico. Infect Genet Evol 11:1243–1249

    Article  PubMed  Google Scholar 

  • Oke TR (1982) The energetic basis of the urban heat island. Q J Roy Meteor Soc 108:1–24

    Google Scholar 

  • Ottenheim MM, Volmer AD (1999) Wing length plasticity in Eristalis arbustorum (Diptera: Syrphidae). Neth J Zool 49:15–27

    Article  Google Scholar 

  • Ottenheim MM, Volmer AD, Holloway GJ (1996) The genetics of phenotypic plasticity in adult abdominal colour pattern of Eristalis arbustorum (Diptera: Syrphidae). Heredity 77:493–499

    Article  Google Scholar 

  • Ottenheim MM, Hensler A, Brakefield PM (1998) Geographic variation in plasticity in Eristalis arbustorum. Biol J Linn Soc 65:215–229

    Google Scholar 

  • Ottenheim MM, Wertheim B, Holloway GJ, Brakefield PM (1999) Survival of colour-polymorphic Eristalis arbustorum hoverflies in semi-field conditions. Funct Ecol 13:72–77

    Article  Google Scholar 

  • Palmer AR, Strobeck C (1986) Fluctuating asymmetry: measurement, analysis, patterns. Annu Rev Ecol Evol S 17:391–421

    Article  Google Scholar 

  • Palmer AR, Strobeck C (1992) Fluctuating asymmetry as a measure of developmental stability: implications of non-normal distributions and power statistical tests. Acta Zool Fenn 191:57–72

    Google Scholar 

  • Pasteur N, Pasteur G, Bonhomme F, Catalan J, Britton-Davidian J (1988) Practical isozyme genetics. Ellis Horwood Limited, Chichester

    Google Scholar 

  • Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353

    Article  PubMed  Google Scholar 

  • Powney GD, Carvell C, Edwards M, Morris RKA, Roy HE, Woodcock BA, Isaac NJB (2019) Widespread losses of pollinating insects in Britain. Nat Commun 10:1018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R Development Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org

  • Ratnieks FL, Carreck NL (2010) Ecology: clarity on honey bee collapse? Science 8:152–153

    Article  Google Scholar 

  • Reeve MW, Fowler K, Partridge L (2000) Increased body size confers greater fitness at lower experimental temperature in male Drosophila melanogaster. J Evol Biol 13:836–844

    Article  Google Scholar 

  • Rohlf FJ (2016) TpsDig, version 2.26. Department of Ecology and Evolution, State University of New York at Stony Brook. http://life.bio.sunysb.edu/morph/

  • Rotheray EL, Bussière LF, Moore P, Bergstrom L, Goulson D (2014) Mark recapture estimates of dispersal ability and observations on the territorial behaviour of the rare hoverfly, Hammerschmidtia ferruginea (Diptera, Syrphidae). J Insect Conserv 18:179–188

    Article  Google Scholar 

  • Sánchez-Bayo F, Wyckhuys KAG (2019) Worldwide decline of the entomofauna: a review of its drivers. Biol Conserv 232:8–27

    Article  Google Scholar 

  • Segelbacher G, Cushman SA, Epperson BK, Fortin M-J, Francois O, Hardy OJ, Holderegger R, Taberlet P, Waits LP, Manel S (2010) Applications of landscape genetics in conservation biology: concepts and challenges. Conserv Genet 11:375–385

    Article  Google Scholar 

  • Sekar S (2011) A meta-analysis of the traits affecting dispersal ability in butterflies: can wingspan be used as a proxy? J Anim Ecol 8:174–184

    Google Scholar 

  • Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P (1994) Evolution, weighing, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 87:651–701

    Article  CAS  Google Scholar 

  • Simons AM, Johnston MO (1997) Developmental instability as a bet-hedging strategy. Oikos 80:401–406

    Article  Google Scholar 

  • Speight MCD, Castella E, Sarthou JP (2017) StN 2015. Syrph the net on CD, issue 10. Syrph the Net Publications. In: Speight MCD, Castella E, Sarthou JP, Vanappelghem C (eds) Syrph the Net Publications, Dublin, pp 1–291

  • Ståhls G, Vujić AA, Petanidou T, Cardoso P, Radenković SR, Ačanski JM, Pérez-Bañón C, Rojo S (2016) Phylogeographic patterns of Merodon hoverflies in the Eastern Mediterranean region: revealing connections and barriers. Ecol Evol 6:2226–2245

    Article  PubMed  PubMed Central  Google Scholar 

  • Stanley DA, Gunning D, Stout J (2003) Pollinators and pollination of oilseed rape crops (Brassica napus L.) in Ireland: ecological and economic incentives for pollinator conservation. J Insect Conserv 17:1181–1189

    Article  Google Scholar 

  • Stevens VM, Trochet A, Van Dyck H, Clobert J, Baguette M (2012) How is dispersal integrated in life histories: a quantitative analysis using butterflies. Ecol Lett 15:74–86

    Article  PubMed  Google Scholar 

  • Theodorou P, Albig K, Radzeviciute R, Settele J, Schweiger O, Murray TSE, Paxton RJ (2017) The structure of flower visitor networks in relation to pollination across an agricultural to urban gradient. Funct Ecol 31:838–847

    Article  Google Scholar 

  • Theodorou P, Radzeviciute R, Kahnt B, Soro A, Grosse I, Paxton RJ (2018) Genome-wide single nucleotide polymorphisms can suggests adaptation to urbanization in an important pollinator, the red-tailed bumblebee (Bombus lapidaries L.). Proc R Soc B 285:20172806

    Article  PubMed  PubMed Central  Google Scholar 

  • Thyselius M, Nordström K (2016) Hoverfly locomotor activity is resilient to external influence and intrinsic factors. J Comp Physiol A 202:45–54

    Article  Google Scholar 

  • Van Dongen S (1999) Accuracy and power in fluctuating asymmetry studies: effects of sample size and number of within-subject repeats. J Evol Biol 12:547–550

    Article  Google Scholar 

  • Van Dongen S (2006) Fluctuating asymmetry and developmental instability in evolutionary biology: past, present and future. J Evol Biol 19:1727–1743

    Article  CAS  PubMed  Google Scholar 

  • Van Dongen S, Lens L, Pape E, Volckaert FAM, Raeymaekers JAM (2009) Evolutionary history shapes the association between developmental instability and population-level genetic variation in three-spined sticklebacks. J Evol Biol 22:1695–1707

    Article  PubMed  CAS  Google Scholar 

  • Vanparys V, Meerts P, Jacquemart A-L (2008) Plant-pollinator interactions: comparison between an invasive and a native congeneric species. Acta Oecol 34:361–369

    Article  Google Scholar 

  • Watson DF (1992) Contouring: a guide to the analysis and display of spatial data. Pergamon Press, New York

    Google Scholar 

  • Willmore KE, Young NM, Richtsmeier JT (2007) Phenotypic variability: its components, measurement and underlying developmental processes. Evol Biol 34:99–120

    Article  Google Scholar 

  • Wratten SD, Bowie MH, Hickman JM, Evans AM, Sedcole JR, Tylianakis JM (2003) Field boundaries as barriers to movement of hoverflies (Diptera: Syrphidae) in cultivated land. Oecologia 134:605–611

    Article  PubMed  Google Scholar 

  • Wright S (1951) The genetical structure of populations. Ann Eug 15:323–354

    Article  CAS  Google Scholar 

  • Yu H, Qiang L (2004) Foraging and pollination insects of Paeonia lactiflora. Kunchong Zhishi 41:449–454

    Google Scholar 

Download references

Acknowledgements

The authors thank the reviewers for their constructive criticisms and helpful comments on earlier drafts of the manuscript. We are also grateful to Nemanja Gojkovic (University of Novi Sad) for language editing and comments on an early version on the manuscript. We thank dr Edward Petri (University of Novi Sad) for careful editing of the final manuscript for English grammar and usage. This work was supported by the Ministry of Education, Science and Technological Development of Serbia (Dynamics of gene pool, genetic and phenotypic variability of populations, determined by the environmental changes, No. OI173012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vesna Milankov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This work did not involve human subjects or experiments on animals.

Informed consent

Informed consent statement does not apply to this work since it did not involve human subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4110 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Francuski, L., Ludoški, J., Lukač, M. et al. Fine scale population structure of hoverfly pollinator, Eristalis arbustorum: an integrative study. J Insect Conserv 24, 49–63 (2020). https://doi.org/10.1007/s10841-019-00202-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-019-00202-5

Keywords

Navigation