Log in

Numerical modeling of a dielectric modulated surrounding-triple-gate germanium-source MOSFET (DM-STGGS-MOSFET)-based biosensor

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

This paper presents for the first time an analytical model of a dielectric modulated surrounding-triple-gate MOSFET with a germanium source-based biosensor, which shows excellent improvement in sensitivity when compared to a silicon source. The mathematical analysis is based on the center-channel potential which is obtained by solving Poisson's equation in the cylindrical coordinate system using a parabolic approximation. The channel potential profile, threshold voltage, drain current, and subthreshold swing are obtained mathematically. Biosensing performance is investigated for different charged and neutral biomolecules by varying different device metrics including cavity thickness, channel thickness, cavity length, channel do**, and drain voltage. The analytical results are validated and verified with numerical simulations conducted with the ATLAS TCAD simulator and show outstanding agreement with the simulated results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Not Applicable.

References

  1. Sood, H., Srivastava, V.M., Singh, G.: Advanced MOSFET technologies for next generation communication systems - perspective and challenges: A review. J. Eng. Sci. Technol. Rev. 11(3), 180–195 (2018)

    Article  Google Scholar 

  2. Das, A., Kanaujia, B.K., Nath, V., Rewari, S., Gupta, R.S.: Impact of reverse gate oxide stacking on gate all around tunnel fet for high frequency analog and RF applications. In: 2020 IEEE 17th India Council International Conference INDICON 2020, pp. 1–6 (2020)

  3. Goyal, P., Srivastava, G., Rewari, S., Gupta, R.S.: Controlling ambipolarity and rising ion in TFETs for enhanced reliability: a review. In: 2020 5th IEEE International Conference. Recent Adv. Innov. Eng. ICRAIE 2020 - Proceeding, pp. 1–6 (2020)

  4. Sharma, S., Rewari, S., Nath, V., Deswal, S. S., Gupta, R. S.: Schottky barrier double surrounding gate MOSFET for high-frequency implementation. In: 2020 5th IEEE International Conference on. Recent Advance Innovation Engineering, pp. 5–8 (2020). https://doi.org/10.1109/ICRAIE51050.2020.9358359.

  5. Sharma, S., Goel, A., Rewari, S., Vandana, N., Gupta, R.S.: Enhanced analog performance and high-frequency applications of dielectric engineered high-K Schottky nanowire FET. In: Silicon (2022)

  6. Chakraborty, A., Sarkar, A.: Analytical modeling and sensitivity analysis of dielectric-modulated junctionless gate stack surrounding gate MOSFET (JLGSSRG) for application as biosensor. J. Comput. Electron. 16(3), 556–567 (2017)

    Article  Google Scholar 

  7. Das, A., Rewari, S., Kanaujia, B.K., Gupta, R.S.: Recent technological advancement in surrounding gate MOSFET for biosensing applications - a synoptic study. SILICON 14(10), 5133–5143 (2022)

    Article  Google Scholar 

  8. Gautam, R., Saxena, M., Gupta, R.S., Gupta, M.: Numerical model of gate-all-around MOSFET with vacuum gate dielectric for biomolecule detection. IEEE Electron Dev. Lett. 33(12), 1756–1758 (2012). https://doi.org/10.1109/LED.2012.2216247

    Article  Google Scholar 

  9. Pratap, Y., Kumar, M., Kabra, S., Haldar, S., Gupta, R.S., Gupta, M.: Analytical modeling of gate-all-around junctionless transistor based biosensors for detection of neutral biomolecule species. J. Comput. Electron. 17(1), 288–296 (2018)

    Article  Google Scholar 

  10. Goel, A., Rewari, S., Verma, S., Gupta, R.S.: Dielectric modulated triple metal gate all around MOSFET (TMGAA)for DNA bio-molecule detection. In: Proceedings of the International Conference on 2018 IEEE Electron Device Kolkata Conference EDKCON 2018, pp. 337–340 (2018)

  11. Goel, A., Rewari, S., Verma, S., Deswal, S.S., Gupta, R.S.: Dielectric modulated junctionless biotube FET (DM-JL-BT-FET) bio-sensor. IEEE Sens. J. 21(15), 16731–16743 (2021)

    Article  Google Scholar 

  12. Padmanaban, B., Sathiyamoorthy, S., Ramesh, R.: Modeling and simulation of gate engineered gate all-around MOSFET for bio-molecule detection. Indian J. Sci. Technol. 9(43), 1–6 (2016)

    Article  Google Scholar 

  13. Das, R., Chanda, M., Sarkar, C.K.: Analytical modeling of charge plasma-based optimized nanogap embedded surrounding gate MOSFET for label-free biosensing. IEEE Trans. Electron Devices 65(12), 5487–5493 (2018)

    Article  Google Scholar 

  14. Li, C., Liu, F., Han, R., Zhuang, Y.: A vertically stacked nanosheet gate-all-around FET for biosensing application. IEEE Access 9, 63602–63610 (2021)

    Article  Google Scholar 

  15. Jana, G., Sen, D., Debnath, P., Chanda, M.: Power and delay analysis of dielectric modulated dual cavity Junctionless double gate field effect transistor based label-free biosensor. Comput. Electr. Eng. 99, 107828 (2022)

    Article  Google Scholar 

  16. Rahman, E., Shadman, A., Khosru, Q.D.M.: Effect of biomolecule position and fill in factor on sensitivity of a dielectric modulated double gate junctionless MOSFET biosensor. Sens. Bio-Sensing Res. 13, 49–54 (2017)

    Article  Google Scholar 

  17. Wu, H., Si, M., Dong, L., Gu, J., Zhang, J., Ye, P.D.: Germanium nMOSFETs with recessed channel and S/D: contact, scalability, interface, and drain current exceeding 1 A/mm. IEEE Trans. Electron Dev. 62(5), 1419–1426 (2015)

    Article  Google Scholar 

  18. Brunco, D.P., et al.: Germanium MOSFET devices: advances in materials understanding, process development, and electrical performance. J. Electrochem. Soc. 155(7), H552 (2008)

    Article  Google Scholar 

  19. Saha, R., Hirpara, Y., Hoque, S.: Sensitivity analysis on dielectric modulated ge-source DMDG TFET based label-free biosensor. IEEE Trans. Nanotechnol. 20, 552–560 (2021)

    Article  Google Scholar 

  20. Han, K., Long, S., Deng, Z., Zhang, Y., Li, J.: A novel germanium-around-source gate-all-around tunnelling field-effect transistor for low-power applications. Micromachines 11(2), 1–11 (2020)

    Article  Google Scholar 

  21. Bitnar, B.: Silicon, germanium and silicon/germanium photocells for thermophotovoltaics applications. Semicond. Sci. Technol. 18(5), 221–227 (2003). https://doi.org/10.1088/0268-1242/18/5/312

    Article  Google Scholar 

  22. Gamble, H., et al.: Germanium processing. Eng. Mater. (2011). https://doi.org/10.1007/978-3-642-15868-1_1

    Article  Google Scholar 

  23. Nguyen, T.H., Lee, M.S.: A review on germanium resources and its extraction by hydrometallurgical method. Miner. Process. Extr. Metall. Rev. 42(6), 406–426 (2021)

    Article  Google Scholar 

  24. Lee, C.S., Kyu Kim, S., Kim, M.: Ion-sensitive field-effect transistor for biological sensing. Sensors 9(9), 7111–7131 (2009)

    Article  Google Scholar 

  25. Yojo, L.S., Rangel, R.C., Sasaki, K.R.A., Martino, J.A.: Study of ΒΕ SOI MOSFET reconfigurable transistor for biosensing application. ECS J. Solid State Sci. Technol. 10(2), 027004 (2021)

    Article  Google Scholar 

  26. Park, J., Hiep, H., Woubit, A., Kim, M.: Applications of field-effect transistor (FET) -type biosensors. Appl. Sci. Converg. Technol. 23(2), 61–71 (2014)

    Article  Google Scholar 

  27. Khakshoor, A., Belhassen, J., Bendayan, M., Karsenty, A.: Do** modulation of self-induced electric field (SIEF) in asymmetric GaAs/GaAlAs/GaAs quantum wells. Results Phys. (2022). https://doi.org/10.1016/j.rinp.2021.105093

    Article  Google Scholar 

  28. Kang, S.-M., Yusuf, L.: CMOS Digital Integrated Circuits, 3rd ed. (2003)

  29. Hong, S., et al.: Improved CO gas detection of Si MOSFET gas sensor with catalytic Pt decoration and pre-bias effect. Sensors Actuators B Chem. 300, 127040 (2019)

    Article  Google Scholar 

  30. Ayadi, Y., et al.: Novel concept of gas sensitivity characterization of materials suited for implementation in FET-based gas sensors. Nanoscale Res. Lett. (2016). https://doi.org/10.1186/s11671-016-1687-z

    Article  Google Scholar 

  31. Gautam, R., Saxena, M., Gupta, R.S., Gupta, M.: Gate-all-around nanowire MOSFET with catalytic metal gate for gas sensing applications. IEEE Trans. Nanotechnol. 12(6), 939–944 (2013)

    Article  Google Scholar 

  32. Pradhan, K.P., Kumar, M.R., Mohapatra, S.K., Sahu, P.K.: Analytical modeling of threshold voltage for cylindrical gate all around (CGAA) MOSFET using center potential. Ain Shams Eng. J. 6(4), 1171–1177 (2015)

    Article  Google Scholar 

  33. ATLAS User’s Manual: Device Simulation Software, Santa Clara, CA (2018)

  34. Zhang, Y., Han, K., Li, J.: A simulation study of a gate-all-around nanowire transistor with a core-insulator. Micromachines 11(2), 1–12 (2020)

    Article  Google Scholar 

  35. Ganesh, A., Goel, K., Mayall, J.S., Rewari, S.: Subthreshold analytical model of asymmetric gate stack triple metal gate all around MOSFET (AGSTMGAAFET) for improved analog applications. SILICON 14, 4063–4073 (2021)

    Article  Google Scholar 

  36. Ye, S., Yamabe, K., Endoh, T.: Ultimate vertical gate-all-around metal–oxide–semiconductor field-effect transistor and its three-dimensional integrated circuits. Mater. Sci. Semicond. Process. 134, 106046 (2021)

    Article  Google Scholar 

  37. Choi, S.J., Il Moon, D., Kim, S., Duarte, J.P., Choi, Y.K.: Sensitivity of threshold voltage to nanowire width variation in junctionless transistors. IEEE Electron Dev. Lett. 32(2), 125–127 (2011)

    Article  Google Scholar 

  38. Kumar, M., Haldar, S., Gupta, M., Gupta, R.S.: Ambipolarity reduction in DMG asymmetric vacuum dielectric Schottky Barrier GAA MOSFET to improve hot carrier reliability. Superlatt. Microstruct. 111, 10–22 (2017)

    Article  Google Scholar 

  39. Sze, S.M.: VLSI Technology. McGraw Hill education, New York (2017)

    Google Scholar 

  40. Goley, P.S., Hudait, M.K.: Germanium based field-effect transistors: Challenges and opportunities. Materials (Basel) 7(3), 2301–2339 (2014)

    Article  Google Scholar 

  41. Parihar, M.S., Kranti, A.: Enhanced sensitivity of double gate junctionless transistor architecture for biosensing applications. Nanotechnology 26(14), 145201 (2015). https://doi.org/10.1088/0957-4484/26/14/145201

    Article  Google Scholar 

  42. Preethi, S., Venkatesh, M., Karthigai Pandian, M., Lakshmi Priya, G.: Analytical modeling and simulation of gate-all-around junctionless mosfet for biosensing applications. Silicon 13(10), 3755–3764 (2021). https://doi.org/10.1007/s12633-021-01301-2

    Article  Google Scholar 

  43. Hafiz, S.A., Ehteshamuddin, I.M., Loan, S.A.: Dielectrically modulated source-engineered charge-plasma-based schottky-FET as a label-free biosensor. IEEE Trans. Electron Devices 66(4), 1905–1910 (2019)

    Article  Google Scholar 

  44. Kumari, M., Singh, N.K., Sahoo, M., Rahaman, H.: Work function optimization for enhancement of sensitivity of dual-material (DM), double-gate (DG), junctionless MOSFET-based biosensor. Appl. Phys. A Mater. Sci. Process. 127(2), 1–8 (2021)

    Article  Google Scholar 

  45. Jang, D.-Y., Kim, Y.-P., Kim, H.-S., KoPark, S.-H., Choi, S.-Y., Choi, Y.-K.: Sublithographic vertical gold nanogap for label-free electrical detection of protein-ligand binding. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 25(2), 443 (2007)

    Article  Google Scholar 

  46. Parihar, M.S., Ghosh, D., Armstrong, G.A., Yu, R., Razavi, P., Kranti, A.: Bipolar effects in unipolar junctionless transistors. Appl. Phys. Lett. (2012). https://doi.org/10.1063/1.4748909

    Article  Google Scholar 

  47. Kim, S., Ahn, J.H., Park, T.J., Lee, S.Y., Choi, Y.K.: A biomolecular detection method based on charge pum** in a nanogap embedded field-effect-transistor biosensor. Appl. Phys. Lett. 94(24), 1–4 (2009). https://doi.org/10.1063/1.3148340

    Article  Google Scholar 

  48. Busse, S., Scheumann, V., Menges, B., Mittler, S.: Sensitivity studies for specific binding reactions using the biotin/streptavidin system by evanescent optical methods. Biosens. Bioelectron. 17(8), 704–710 (2002)

    Article  Google Scholar 

  49. Lodhi, A., Rajan, C., Kumar, A., Dip, B., Samajdar, P., Soni, D.: Sensitivity and sensing speed analysis of extended nano - cavity and source over electrode in Si / SiGe based TFET biosensor. Appl. Phys. A 126(11), 1–8 (2020)

    Article  Google Scholar 

  50. Kim, C.H., Jung, C., Park, H.G., Choi, Y.K.: Novel dielectric-modulated field-effect transistor for label-free DNA detection. Biochip J. 2(2), 127–134 (2009)

    Google Scholar 

  51. Narang, R., Saxena, M., Gupta, M.: Modeling and simulation investigation of sensitivity of symmetric split gate junctionless fet for biosensing application. IEEE Sens. J. 17(15), 4853–4861 (2017)

    Article  Google Scholar 

  52. Narang, R., Saxena, M., Gupta, M.: Modeling of gate underlap junctionless double gate MOSFET as bio-sensor. Mater. Sci. Semicond. Process. 71, 240–251 (2017)

    Article  Google Scholar 

  53. Jung, H.: Analysis of subthreshold swing in symmetric junctionless double gate MOSFET using high-k gate oxides. Int. J. Electr. Electron. Eng. Telecommun. 8(6), 334–339 (2019)

    Google Scholar 

  54. Wei, J., Lei, J., Tang, X., Li, B., Liu, S., Chen, K.J.: Channel-to-channel coupling in normally-off GaN double-channel MOS-HEMT. IEEE Electron Device Lett. 39(1), 59–62 (2018). https://doi.org/10.1109/LED.2017.2771354

    Article  Google Scholar 

  55. Abarca-Cabrera, L., Fraga-García, P., Berensmeier, S.: Bio-nano interactions: binding proteins, polysaccharides, lipids and nucleic acids onto magnetic nanoparticles. Biomater. Res. 25(1), 1–18 (2021)

    Article  Google Scholar 

  56. Chiu, C.Y., Ruan, L., Huang, Y.: Biomolecular specificity controlled nanomaterial synthesis. Chem. Soc. Rev. 42(7), 2512–2527 (2013)

    Article  Google Scholar 

  57. Jain, S. K., Joshi, A. M.: Dielectric-modulated double gate bilayer electrode organic thin film transistor-based biosensor for label-free detection: simulation study and sensitivity analysis. pp. 1–16 (2022)

  58. Chiang, T.-K., Liou, J.: An analytical subthreshold current/swing model for junctionless cylindrical nanowire FETs (JLCNFETs). Facta Univ. - Ser. Electron. Eng. 26(3), 157–173 (2013). https://doi.org/10.2298/fuee1303157c

    Article  Google Scholar 

  59. Sharma, D., Vishvakarma, S.K.: Precise analytical model for short channel Cylindrical Gate (CylG) Gate-All-Around (GAA) MOSFET. Solid State Electron. 86, 68–74 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Director, Maharaja Agrasen Institute of Technology, Delhi, for providing the facilities to carry out this research work. One of the authors (Amit Das) would like to thank UGC, Government of India, for financial assistance to carry out this research work.

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonam Rewari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

$$e_{1} = 2\left[ {\frac{\alpha }{{\mu_{1} }}\cosh \left( {\frac{{z_{1} - z_{2} }}{{\mu_{1} }}} \right) + \frac{\beta }{{\mu_{2} }}\cosh \left( {\frac{{z_{2} - z_{3} }}{{\mu_{2} }}} \right)} \right],e_{2} = 2\frac{\beta }{{\mu_{2} }},e_{3} = 2\left[ {\frac{\beta }{{\mu_{2} }}\cosh \left( {\frac{{z_{2} - z_{3} }}{{\mu_{2} }}} \right) + \frac{\gamma }{{\mu_{3} }}\cosh \left( {\frac{{z_{3} - z_{4} }}{{\mu_{3} }}} \right)} \right],e_{4} = \left( {e_{1} e_{3} - e_{{_{2} }}^{2} } \right)^{ - 1}$$
$$s = \frac{\alpha }{{\mu_{1} }}s_{1} - \frac{\beta }{{\mu_{2} }}s_{2} ,t = \frac{\gamma }{{\mu_{3} }}t_{1} - \frac{\beta }{{\mu_{2} }}t_{2}$$
$$s_{1} = s_{1a} - s_{1b} ,s_{2} = s_{2a} - s_{2b} \quad s_{1a} = \theta_{1} e^{{\frac{{z_{2} }}{{\mu_{1} }}}} \left( {e^{{\frac{{ - z_{1} }}{{\mu_{1} }}}} - e^{{\frac{{ - z_{2} }}{{\mu_{1} }}}} } \right)\quad s_{1b} = \theta_{1} e^{{\frac{{ - z_{2} }}{{\mu_{1} }}}} \left( {e^{{\frac{{z_{2} }}{{\mu_{1} }}}} - e^{{\frac{{z_{1} }}{{\mu_{1} }}}} } \right) - 2V_{bi,1}$$
$$s_{2a} = \theta_{2} e^{{\frac{{z_{2} }}{{\mu_{2} }}}} \left( {e^{{\frac{{ - z_{2} }}{{\mu_{2} }}}} - e^{{\frac{{ - z_{3} }}{{\mu_{2} }}}} } \right),s_{2b} = \theta_{2} e^{{\frac{{ - z_{2} }}{{\mu_{2} }}}} \left( {e^{{\frac{{z_{3} }}{{\mu_{2} }}}} - e^{{\frac{{z_{2} }}{{\mu_{2} }}}} } \right)$$
$$t_{1} = t_{1a} - t_{1b} ,t_{2} = t_{2a} - t_{2b} ,t_{1a} = \theta_{3} e^{{\frac{{z_{3} }}{{\mu_{3} }}}} \left( {e^{{\frac{{ - z_{3} }}{{\mu_{3} }}}} - e^{{\frac{{ - z_{4} }}{{\mu_{3} }}}} } \right) - 2V_{bi,2}$$
$$t_{1b} = \theta_{3} e^{{\frac{{ - z_{3} }}{{\mu_{3} }}}} \left( {e^{{\frac{{z_{4} }}{{\mu_{3} }}}} - e^{{\frac{{z_{3} }}{{\mu_{3} }}}} } \right) + 2V_{DS} ,\quad t_{2a} = \theta_{2} e^{{\frac{{z_{3} }}{{\mu_{2} }}}} \left( {e^{{\frac{{ - z_{2} }}{{\mu_{2} }}}} - e^{{\frac{{ - z_{3} }}{{\mu_{2} }}}} } \right)$$
$$t_{2b} = \theta_{2} e^{{\frac{{ - z_{3} }}{{\mu_{2} }}}} \left( {e^{{\frac{{z_{3} }}{{\mu_{2} }}}} - e^{{\frac{{z_{2} }}{{\mu_{2} }}}} } \right)$$

Appendix B

$$n_{11} = 4d_{11} - 1,n_{12} = 4d_{22} + 2\xi_{1} + 4\phi_{f} ,n_{13} = 4d_{3} - 4\phi_{f}^{2} - \xi_{1}^{2} - 4\phi_{f} \xi_{1} ,d_{11} = d_{33} = d_{1} d_{3} ,d_{22} = d_{1} + d_{3}$$
$$d_{2} = \alpha n_{1} ,\quad d_{4} = \alpha n_{2} ,\quad \phi_{f} = V_{T} \ln \left( {\frac{{N_{Ch} }}{{n_{i(Si)} }}} \right)$$
$$d_{1} = \alpha \left[ {\left( {e^{{\frac{{ - z_{1} }}{{\mu_{1} }}}} - e^{{\frac{{ - z_{2} }}{{\mu_{1} }}}} } \right) - e^{{\frac{{ - z_{1} }}{{\mu_{1} }}}} e_{3} e_{4} \left( {m_{1} - m_{2} } \right) - e^{{\frac{{ - z_{1} }}{{\mu_{1} }}}} e_{2} e_{4} \left( {m_{4} - m_{5} } \right)} \right]$$

\(d_{3} = \alpha \left[ {\left( {e^{{\frac{{z_{2} }}{{\mu_{1} }}}} - e^{{\frac{{z_{1} }}{{\mu_{1} }}}} } \right) + e^{{\frac{{z_{1} }}{{\mu_{1} }}}} e_{3} e_{4} \left( {m_{1} - m_{2} } \right) - e^{{\frac{{z_{1} }}{{\mu_{1} }}}} e_{2} e_{4} \left( {m_{4} - m_{5} } \right)} \right],V_{T} = \frac{{k_{B} T}}{q}\) ,

$$n_{1} = \left[ { - \xi_{1} \left( {e^{{\frac{{ - z_{1} }}{{\mu_{1} }}}} - e^{{\frac{{ - z_{2} }}{{\mu_{1} }}}} } \right) + V_{bi,1} e^{{\frac{{ - z_{2} }}{{\mu_{1} }}}} - e^{{\frac{{ - z_{1} }}{{\mu_{1} }}}} e_{3} e_{4} \left( { - m_{1} \xi_{1} + m_{2} \xi_{2} - m_{3} } \right) + e^{{\frac{{ - z_{1} }}{{\mu_{1} }}}} e_{2} e_{4} \left( { - m_{4} \xi_{3} + m_{5} \xi_{2} - m_{6} } \right)} \right],n_{2} = \left[ { - \xi_{1} \left( {e^{{\frac{{z_{2} }}{{\mu_{1} }}}} - e^{{\frac{{z_{1} }}{{\mu_{1} }}}} } \right) - V_{bi,1} e^{{\frac{{z_{2} }}{{\mu_{1} }}}} + e^{{\frac{{z_{1} }}{{\mu_{1} }}}} e_{3} e_{4} \left( { - m_{1} \xi_{1} + m_{2} \xi_{2} - m_{3} } \right) - e^{{\frac{{z_{1} }}{{\mu_{1} }}}} e_{2} e_{4} \left( { - m_{4} \xi_{3} + m_{5} \xi_{2} - m_{6} } \right)} \right],\xi_{1} = \frac{{qN_{Ch} a}}{{2C_{{ox_{1} }} }} + \frac{{qN_{Ch} a^{2} }}{{4\varepsilon_{Ch} }} - V_{{FB_{1} }} ,\xi_{2} = \frac{{qN_{Ch} a}}{{2C_{{ox_{2} }} }} + \frac{{qN_{Ch} a^{2} }}{{4\varepsilon_{Ch} }} - V_{{FB_{2} }} ,\xi_{3} = \frac{{qN_{Ch} a}}{{2C_{{ox_{3} }} }} + \frac{{qN_{Ch} a^{2} }}{{4\varepsilon_{Ch} }} - V_{{FB_{3} }} ,m_{3} = \frac{ - 2\alpha }{{\mu_{1} }}V_{{bi_{1} }} ,m_{6} = \frac{2\gamma }{{\mu_{3} }}\left[ {V_{{bi_{2} }} + V_{DS} } \right]$$
$$m_{1} = \frac{\alpha }{{\mu_{1} }}\left[ {e^{{\frac{{z_{2} }}{{\mu_{1} }}}} \left( {e^{{\frac{{ - z_{1} }}{{\mu_{1} }}}} - e^{{\frac{{ - z_{2} }}{{\mu_{1} }}}} } \right) - e^{{\frac{{ - z_{2} }}{{\mu_{1} }}}} \left( {e^{{\frac{{z_{2} }}{{\mu_{1} }}}} - e^{{\frac{{z_{1} }}{{\mu_{1} }}}} } \right)} \right]$$
$$m_{2} = \frac{\beta }{{\mu_{2} }}\left[ {e^{{\frac{{z_{2} }}{{\mu_{2} }}}} \left( {e^{{\frac{{ - z_{2} }}{{\mu_{2} }}}} - e^{{\frac{{ - z_{3} }}{{\mu_{2} }}}} } \right) - e^{{\frac{{ - z_{2} }}{{\mu_{2} }}}} \left( {e^{{\frac{{z_{3} }}{{\mu_{2} }}}} - e^{{\frac{{z_{2} }}{{\mu_{2} }}}} } \right)} \right]$$
$$m_{4} = \frac{\gamma }{{\mu_{3} }}\left[ {e^{{\frac{{z_{3} }}{{\mu_{3} }}}} \left( {e^{{\frac{{ - z_{3} }}{{\mu_{3} }}}} - e^{{\frac{{ - z_{4} }}{{\mu_{3} }}}} } \right) - e^{{\frac{{ - z_{3} }}{{\mu_{3} }}}} \left( {e^{{\frac{{z_{4} }}{{\mu_{3} }}}} - e^{{\frac{{z_{3} }}{{\mu_{3} }}}} } \right)} \right]$$
$$m_{5} = \frac{\beta }{{\mu_{2} }}\left[ {e^{{\frac{{z_{3} }}{{\mu_{2} }}}} \left( {e^{{\frac{{ - z_{2} }}{{\mu_{2} }}}} - e^{{\frac{{ - z_{3} }}{{\mu_{2} }}}} } \right) - e^{{\frac{{ - z_{3} }}{{\mu_{2} }}}} \left( {e^{{\frac{{z_{3} }}{{\mu_{2} }}}} - e^{{\frac{{z_{2} }}{{\mu_{2} }}}} } \right)} \right]$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A., Rewari, S., Kanaujia, B.K. et al. Numerical modeling of a dielectric modulated surrounding-triple-gate germanium-source MOSFET (DM-STGGS-MOSFET)-based biosensor. J Comput Electron 22, 742–759 (2023). https://doi.org/10.1007/s10825-023-02008-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-023-02008-w

Keywords

Navigation