Log in

Highly Selective Fluorescent Sensor for Detection of Al3+ Based on Schiff-Base of 2-Hydroxy-1-Naphthaldehyde and 8-Aminoquinoline and Its Applications

  • Published:
Journal of Applied Spectroscopy Aims and scope

Aluminum is a widely distributed element and plays an indispensable role in our lives, but excessive intake of Al3+ can cause potential harm to human health. Highly selective methods for the rapid detection of Al3+ are urgently needed. Here, a novel "turn on" fluorescent probe L based on Schiff-base of 2-hydroxy-1-naphthaldehyde and 8-aminoquinoline was obtained in an excellent yield. Probe L presents significant properties such as rapid response, good stability, wide pH range, simple synthetic operation, and provides an efficient strategy for the highly selective detection of Al3+ in an aqueous solution of DMSO/H2O (7:3, v:v). According to Job's curve and fluorescence titration, probe L with Al3+ forms a 2:1 ratio of complex, and the lowest limit of detection is 3.23 × 10−8 mol/L. The possible combination mode for probe L with Al3+ was proposed by comparison with the changes of 1H NMR and FTIR spectra of L and its complex. In addition, the potent applicants for probe L were also investigated, and indicated that it could conveniently be made into a series of sensor strips and applied to rapidly detect trace Al3+ in traditional Chinese medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. O. Tümay, Chem. Select., 6, 10561–10572 (2021).

    Google Scholar 

  2. S. Cichosz, A. Masek, and M. Zaborski, Polym. Test., 67, 342–348 (2018).

    Article  Google Scholar 

  3. D. Sareen, P. Kaur, and K. Singh, Coord. Chem. Rev., 265, 125–154 (2014).

    Article  Google Scholar 

  4. J. J. Torrez-Herrera, E. G. Fuentes-Ordoñez, and S. A. Korili, Powder Technol., 377, 80–88 (2021).

    Article  Google Scholar 

  5. T. S. Liu, F. Qiu, B. X. Dong, R. Geng, M. Zha, H. Y. Yang, S. L. Shu, and Q. C. Jiang, Mater. Des., 206, Article ID 109743 (2021).

  6. Y.-J. Liu, F.-F. Tian, X.-Y. Fan, F.-L. Jiang, and Y. I. Liu, Sens. Actuat. B: Chem., 240, 916–925 (2017).

    Article  ADS  Google Scholar 

  7. K. P. Kepp, Chem. Rev., 112, 5193–5239 (2012).

    Article  Google Scholar 

  8. S. V. Kumar, P. Kumara, and R. Gupta, New J. Chem., 44, 13285–13294 (2020).

    Article  Google Scholar 

  9. H. N. Peng, Y. Q. Liu, J. Q. Huang, S. S. Huang, X. P. Cai, S. J. Xu, A. Q. Huang, and M. X. Zeng, J. Mol. Struct., 1229, Article ID 129866 (2021).

  10. M. M. Wang, L. X. Lu, W. W. Song, X. Y. Wang, T. M. Sun, J. L. Zhu, J. Wang, J. Lumin., 233, Article ID 117911 (2021).

  11. J. Hu, Y. Sun, J. Qi, P. Pei, Q. Lin, and Y.-M. Zhang, RSC Adv., 6, 100401–100406 (2016).

    Article  ADS  Google Scholar 

  12. P. W. Cheah, M. P. Heng, A. Izati, C. H. Ng, and K. W. Tan, Inorg. Chim. Acta, 512, Article ID 119901 (2020).

  13. S. Upadhyay, A. Singh, R. Sinha, S. Omer, and K. Negi, J. Mol. Struct., 1193, 89–102 (2019).

    Article  ADS  Google Scholar 

  14. K. P. Carter, A. M. Young, and A. E. Palmer, Chem. Rev., 114, 4564–4601 (2014).

    Article  Google Scholar 

  15. J. Berrones-Reyes, B. M. Muñoz-Flores, A. Gómez-Treviño, M. A. Treto-Suárez, D. Páez-Hernández, E. Schott, X. Zarate, and V. M. Jiménez-Pérez, Mater. Chem. Phys., 233, 89–101 (2019).

    Article  Google Scholar 

  16. S. Mukherjee, S. Betal, and A. P. Chattopadhyay, New J. Chem., 44, 12692–12703 (2020).

    Article  Google Scholar 

  17. S. Pramanik, S. K. Manna, S. Pathak, D. Mondal, K. Pal, and S. Mukhopadhyay, New J. Chem., 44, 13259–13265 (2020).

    Article  Google Scholar 

  18. B. Balagurusamy, P. Ilayaperumal, Y. Zorlu, and R. Chellaiah, Chem. Select, 5, 8086–8092 (2020).

    Google Scholar 

  19. B. Bharali, H. Talukdar, P. Phukan, and D. K. Das, J. Fluoresc., 30, 751–757 (2020).

    Article  Google Scholar 

  20. S. F. Carlos, R. F. Monteiro, D. L. A. Silva, C. Zanlorenzi, and F. S. Nunes, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 231, Article ID 118119 (2020), https://doi.org/10.1016/j.saa.2020.118119.

  21. S. Poomalai, S. Soundrapandian, S. Ramasamy, M. P. Selvakumar, and V. M. Enoch, IV, Chem. Phys. Lett., 751, Article ID 137551 (2020)

  22. S. S. Peng, H. X. Wang, H. C. Ding, C. B. Fan, G. Liu, and S. Z. Pu, J. Photochem. Photobiol. A: Chem., 425, Article ID 113718 (2022).

  23. Z. C. Zhou, W. J. Niu, Z. Q. Lin, Y. H. Cui, X. Tang, and Y. J. Li, Inorg. Chem. Commun., 121, Article ID 108168 (2020).

  24. F.-F. Guo, B.-B. Wang, W.-N. Wu, W.-Y. Bi, Z.-H. Xu, Y.-C. Fan, L.-Y. Bian, and Y. Wang, J. Mol. Struct., 1251, Article ID 132073 (2022).

  25. M. R. Wei, H. Q. Zhong, J. Zhou, W. D. Liu, W. B. **, P. F. Xu, Q. Q. Qiu, Z. S. Qian, and H. Feng, Talanta, 219, Article ID 121298 (2020).

  26. L. Zhu, L. X. Lu, M. Wang, T. M. Sun, Y. Huang, C. X. Wang, W. Y. Bao, M. M. Wang, F. X. Zou, and Y. F. Tang, Tetrahedron Lett., 61, Article ID 151893 (2020).

  27. G. Ganesan, B. Pownthurai, N. K. Kotwal, M. Yadav, P. Chetti, and A. Chaskar, J. Photochem. Photobiol. A: Chem., 425, 113699 (2022).

    Article  Google Scholar 

  28. J. S. Heo, D. K. Gil,·and C. Kim, J. Fluoresc., 32, 825–833 (2022); https://doi.org/10.1007/s10895-021-02869-z.

  29. H. J. Kim, B. Suh, and C. Kim, J. Chin. Chem. Soc., 69, 366–374 (2022).

    Article  Google Scholar 

  30. S. Poomalai, S. Soundrapandian, S. Ramasamy, M. I. Selvakumar, V. Paulraj, and M. V. Enoch, Chem. Phys. Lett., 751, Article ID 137551 (2020).

  31. L. Bai, Y. Xu, G. Li, S. Tian, L. Li, F. Tao, A. Deng, S. Wang, and L. Wang, Polymer, 11, 573 (2019).

    Article  Google Scholar 

  32. J. M. Bak, S.-H. Jung, and H. I. Lee, Sens. Actuat. B Chem., 345, Article ID 130420 (2021).

  33. K. Wu, J. Hu, X. Cheng, J. Li, C. Zhou, J. Lumin., 219, Article ID 116908 (2019).

  34. Q. Wang, X.-M. Du, B. Zhao, M. L. Pang, Y. Li, and W.-J. Ruan, New J. Chem., 44, 1307–1312 (2020).

    Article  Google Scholar 

  35. S. Megarajan and A. Veerappan, Opt. Mater., 108, Article ID 110177 (2020); https://doi.org/10.1016/j.optmat.2020.110177.

  36. D. Anu, P. Naveen, R. Rajamanikandan, and M. V. Kaveri, J. Photochem. Photobiol. A: Chem., 405, Article ID 112921 (2021).

  37. S. Rachel and G. Samantha, J. Chem. Edu., 98, 2643–2648 (2021).

    Article  Google Scholar 

  38. A. Banerjee, A. Sahana, S. Das, S. Lohar, S. Guha, B. Sarkar, S. K. Mukhopadhyay, A. K. Mukherjee, and D. Das, Analyst, 137, 2166–2175 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ke-Feng Zhang or **ao-Hua Cai.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 91, No. 3, p. 465, May–June, 2024.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, SQ., Zhang, KF. & Cai, XH. Highly Selective Fluorescent Sensor for Detection of Al3+ Based on Schiff-Base of 2-Hydroxy-1-Naphthaldehyde and 8-Aminoquinoline and Its Applications. J Appl Spectrosc (2024). https://doi.org/10.1007/s10812-024-01768-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10812-024-01768-y

Keywords

Navigation