Log in

Preprocessing of Laser-Induced Breakdown Spectra of Low Alloy Steels and Cast Irons Using Partial Least-Squares Regression Analysis

  • Published:
Journal of Applied Spectroscopy Aims and scope

Regression models for the analysis of manganese, chromium, nickel, copper, silicon, vanadium, titanium, and aluminum were constructed using partial least-squares regression based on a set of laser-induced breakdown spectra of low-alloy steels. The spectra were recorded in the range 288–325 nm with a resolution of ~0.04 nm. The laser plasma was excited in a collinear two-pulse mode at wavelength 1064 nm. The efficiency of various methods of spectrum preprocessing (normalization to the baseline, localization of the spectral range, addition of nonlinear components of the spectrum), which allowed the accuracy of the regression models to be improved, was studied. The standard deviation of the analysis results for test samples could be improved in the range from 1.8 times for vanadium to 6.8 times for silicon if the optimal preprocessing method was used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy, 2nd edn., John Wiley & Sons (2013).

  2. Trinh Ngoc Hoang, Atomic-Emission Laser Spectrometry of the Local Macroelemental Distribution in Samples of Biological Fluids Dried on Solid Surface, Candidate Dissertation in Phys.-Mat. Sciences, April 1, 2005, BGU, Minsk (2013).

  3. V. V. Kiris, K. Yu. Katsalap, and M. V. Bel’kov, Quantum Electronics: Proc. of the XIIIth Int. Scientific-Technical Conf., Minsk, November 22–26, 2021 (2021).

  4. V. Lazic, R. Barbini, F. Colao, R. Fantoni, and A. Palucci, Spectrochim. Acta, Part B, 56, 807–820 (2001).

    Article  ADS  Google Scholar 

  5. J. Wu, C.-k. Li, and W.-j. Chen, Spectrosc. Spectr. Analysis, 42, No. 3, 795–801 (2022).

    Google Scholar 

  6. J. Wang, M. Shi, P. Zheng, and S. Xue, J. Appl. Spectrosc., 84, 188–193 (2017).

    Article  ADS  Google Scholar 

  7. P. Devangad, V. K. Unnikrishnan, M. M. Tamboli, K. M. Muhammed Shameem, R. Nayak, K. S. Choudhari, and C. Santhosh, Anal. Methods, 8, 7177–7184 (2016).

  8. C. R. Bhatt, J. C. Jain, C. L. Goueguel, D. L. McIntyre, and J. P. Singh, Appl. Spectrosc., 72, 114–121 (2018).

    Article  ADS  Google Scholar 

  9. Z.-b. Cong, L.-x. Sun, Y. **n, Y. Li, and Li-f. Qi, J. Comput. Commun., 1, 14–18 (2013).

  10. G. Bilge, K. E. Eseller, and H. Berberoglu, J. Eur. Opt. Soc. Rapid Publ., 17, 18 (2021).

    Article  Google Scholar 

  11. T. Takahashi, B. Thornton, T. Sato, T. Ohki, K. Ohki, and T. Sakka, Appl. Opt., 57, 5872–5883 (2018).

    Article  ADS  Google Scholar 

  12. C. B. Stipe, B. D. Hensley, J. L. Boersema, and S. G. Buckley, Appl. Spectrosc., 64, No. 2, 154–160 (2010).

    Article  ADS  Google Scholar 

  13. R. B. Anderson, S. M. Clegg, J. Frydenvang, R. C. Wiens, S. McLennan, R. V. Morris, B. Ehlmann, and M. D. Dyar, Spectrochim. Acta, Part B, 129, 49–57 (2017).

    Article  ADS  Google Scholar 

  14. P. Porizka, J. Klus, A. Hrdlicka, J. Vrabel, P. Skarkova, D. Prochazka, J. Novotny, K. Novotny, and J. Kaiser, J. Anal. At. Spectrom., 32, No. 2, 277–288 (2017).

    Article  Google Scholar 

  15. V. Karki, A. Sarkar, and M. Singh, J. Phys., 86, 1313–1327 (2016).

    Google Scholar 

  16. A. Hrdlicka, L. Zaoralkova, M. Galiova, T. Ctvrtnickova, V. Kanicky, V. Otruba, K. Novotny, P. Krasensky, J. Kaiser, R. Malina, and K. Palenikova, Spectrochim. Acta, Part B, 64, No. 1, 74–78 (2009).

    Google Scholar 

  17. A. N. Zaidel’, V. K. Prokof’ev, S. M. Raiskii, and E. Ya. Shreider, Tables of Spectral Lines [in Russian], Nauka, Moscow (1977).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kiris.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii Vol. 89, No. 6, Pp. 782–788, November–December 2022. https://doi.org/10.47612/0514-7506-2022-89-6-782-788

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belkov, M.V., Kiris, V.V. & Catsalap, K.Y. Preprocessing of Laser-Induced Breakdown Spectra of Low Alloy Steels and Cast Irons Using Partial Least-Squares Regression Analysis. J Appl Spectrosc 89, 1040–1046 (2023). https://doi.org/10.1007/s10812-023-01464-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-023-01464-3

Keywords

Navigation