Log in

Heteroassociation of Caffeine and a Phenanthridine Dye in Aqueous Solution

  • Published:
Journal of Applied Spectroscopy Aims and scope

Association of ethidium bromide and caffeine in aqueous solution was studied using spectrophotometry. The results were analyzed using a molecular dimer heteroassociation model. The molecular association equilibrium constants were determined. The experimental absorption spectrum of a mixture of heterocyclic molecules was deconvoluted into individual components using a regularization method. Quantitative information on the structure of the heterocomplex was obtained using data for the individual spectral components. The distance and angle between point transition dipole moments of the heterogeneous molecules were 0.3 nm and 16o. A calculation of the relative contents of different types of associates in a mixed solution showed that heteroassociation of the molecules decreased the effective concentration of ethidium bromide and, accordingly, the mutagenic activity of the dye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. E. Gale, E. Cundliffe, P. E. Reynolds, N. H. Richmond, and M. J. Waring, The Molecular Basis of Antibiotic Action, Wiley, London (1981), pp. 231–240.

    Google Scholar 

  2. M. D. Mashkovskii, Drugs [in Russian], Meditsina, Moscow (1985), Vol. 2, pp. 107–108.

  3. H. Kimura and T. Aoyama, J. Pharmacobio-Dyn., 12, 589–595 (1989).

    Article  Google Scholar 

  4. F. Traganos, J. Kapuscinski, and Z. Darzynkiewicz, Cancer Res., 51, 3682–3689 (1991).

    Google Scholar 

  5. D. B. Davies, D. A. Veselkov, L. N. Djimant, and A. N. Veselkov, Eur. Biophys. J., 30, 354–366 (2001).

    Article  Google Scholar 

  6. E. E. Tucker and S. D. Christian, J. Solution Chem., 22, 1085–1097 (1993).

    Article  Google Scholar 

  7. M. Zdunek, J. Piosik, and J. Kapuscinski, Biophys. Chem., 84, 77–85 (2000).

    Article  Google Scholar 

  8. S. F. Baranovskii, P. A. Bolotin, and M. P. Evstigneev, Zh. Prikl. Spektrosk., 73, 158–163 (2006) [S. F. Baranovskii, P. A. Bolotin, and M. P. Evstigneev, J. Appl. Spectrosc., 73, 171–177 (2006)].

  9. S. F. Baranovskii and P. A. Bolotin, Zh. Prikl. Spektrosk., 74, 188–194 (2007) [S. F. Baranovskii, and P. A. Bolotin, J. Appl. Spectrosc., 74, 211–218 (2007)].

  10. S. F. Baranovskii, P. A. Bolotin, M. P. Evstigneev, and D. N. Chernyshev, Zh. Prikl. Spektrosk., 75, 242–249 (2008) [S. F. Baranovskii, P. A. Bolotin, M. P. Evstigneev, and D. N. Chernyshev, J. Appl. Spectrosc., 75, 251–260 (2008)].

  11. I. V. Vodolazskaya, V. V. Krasheninnikov, and A. M. Saletsky, Zh. Prikl. Spektrosk., 78, 165–170 (2011) [I. V. Vodolazskaya, V. V. Krasheninnikov, and A. M. Saletsky, J. Appl. Spectrosc., 78, 149–154 (2011)].

  12. N. Rasouli, N. Sohrabi, D. Ajloo, and N. Rezvani, Phys. Chem. Res., 5, 541–554 (2017).

    Google Scholar 

  13. A. N. Veselkov, L. N. Dymant, S. F. Baranovskii, P. A. Bolotin, Kh. E. Parkes, and D. Davis, Khim. Fiz., 13, 70–78 (1994).

    Google Scholar 

  14. F. Michael, C. Manuel, and I. Nerea, Can. J. Chem., 68, 1293–1299 (1990).

    Article  Google Scholar 

  15. S. F. Baranovskii, P. A. Bolotin, M. P. Evstigneev, and D. N. Chernyshev, Zh. Prikl. Spektrosk., 76, 143–151 (2009) [S. F. Baranovsky, P. A. Bolotin, M. P. Evstigneev, and D. N. Chernyshev, J. Appl. Spectrosc., 76, 132–139 (2009)].

  16. A. N. Veselkov, S. F. Baranovskii, and L. N. Dymant, Khim. Fiz., 5, 318–323 (1986).

    Google Scholar 

  17. A. N. Tikhonov and V. Ya. Arsenin, Methods for Solving Incorrect Problems [in Russian], Nauka, Moscow (1979), pp. 53–109.

    Google Scholar 

  18. Yu. S. Lazurkin (Ed.), Physical Study Methods for Proteins and Nucleic Acids [in Russian], Nauka, Moscow (1967), pp. 113–125.

    Google Scholar 

  19. J. Tinoco, J. Am. Chem. Soc., 82, 4785–4790 (1960).

    Article  Google Scholar 

  20. W. Rhodes, J. Am. Chem. Soc., 83, 3609–3617 (1961).

    Article  Google Scholar 

  21. D. A. Veselkov, D. B. Davis, L. N. Dymant, and A. N. Veselkov, Biopolim. Kletka, 16, 468–481 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. F. Baranovskiy.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 85, No. 4, pp. 532–537, July–August, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baranovskiy, S.F., Chernyshev, D.N. Heteroassociation of Caffeine and a Phenanthridine Dye in Aqueous Solution. J Appl Spectrosc 85, 588–593 (2018). https://doi.org/10.1007/s10812-018-0690-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-018-0690-9

Keywords

Navigation