Log in

The impact of algal extract as a biostimulant on cold stress tolerance in barley (Hordeum vulgare L.)

  • Research
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Cold stress, including chilling and freezing temperatures, poses significant challenges to plant growth and productivity in temperate and cold climates. Algal-derived biostimulants have been widely employed to mitigate various environmental stresses in plants. However, limited research has investigated the effect of algal extract on cold tolerance. In this study, we examined the impact of a 0.05% (w/v) water extract from two distantly related algae, Sargassum angustifolium (Sargassaceae, Phaeophyceae) and Haematococcus pluvialis (Haematococcaceae, Chlorophyceae), on barley (Hordeum vulgare) plants grown hydroponically under either control conditions (25/17 °C day/night temperature) or chilling stress (5/3 °C day/night temperature) for a duration of two weeks. While S. angustifolium extract improved plant biomass under control conditions, the algal extracts did not influence biomass under chilling stress. However, both algal extracts positively influenced photosynthetic parameters (leaf pigments and chlorophyll fluorescence) as well as biochemical indicators of cold stress, including proline, carbohydrates, phenolics, peroxidase activity, and phenylalanine ammonia lyase activity. Furthermore, the algal extract significantly reduced leaf injury and lethal temperature (LT50) under freezing stress (–10 °C and –15 °C). Notably, the extract from S. angustifolium, a warm water alga, exhibited slightly or significantly higher effectiveness in mitigating cold stress compared to the extract from H. pluvialis, a species adapted to cold and temperate climates. These findings suggest that the effectiveness of algal extracts in alleviating specific types of environmental stress is not solely dependent on the habitat from which the algae are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abdel Latef AA, Srivastava AK, Saber H, Alwaleed EA, Tran LS (2017) Sargassum muticum and Jania rubens regulate amino acid metabolism to improve growth and alleviate salinity in chickpea. Sci Rep 7:10537

    Article  CAS  Google Scholar 

  • Ali O, Ramsubhag A, Jayaraman J (2019) Biostimulatory activities of Ascophyllum nodosum extract in tomato and sweet pepper crops in a tropical environment. PLoS One 14:e0216710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali O, Ramsubhag A, Jayaraman J (2021) Biostimulant properties of seaweed extracts in plants: Implications towards sustainable crop production. Plants 10:531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bates LS, Waldren RA, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Beck EH, Heim R, Hansen J (2004) Plant resistance to cold stress: mechanisms and environmental signals triggering frost hardening and dehardening. J Biosci 29:449–459

    Article  PubMed  Google Scholar 

  • Berruti A, Lumini E, Balestrini R, Bianciotto V (2016) Arbuscular mycorrhizal fungi as natural biofertilizers: let’s benefit from past successes. Front Microbiol 6:1559

    Article  PubMed  PubMed Central  Google Scholar 

  • Boussiba S, Vonshak A (1991) Astaxanthin accumulation in the green alga Haematococcus pluvialis. Plant Cell Physiol 32:1077–1082

    Article  CAS  Google Scholar 

  • Bradáčová K, Weber NF, Morad-Talab N, Asim M, Imran M, Weinmann M, Neumann G (2016) Micronutrients (Zn/Mn), seaweed extracts, and plant growth-promoting bacteria as cold-stress protectants in maize. Chem Biol Technol Agric 3:19

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Campos PS, Nia Quartin V, chicho Ramalho J, Nunes MA (2003) Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. plants. J Plant Physiol 160:283–292

  • Casado-Vela J, Sellés S, Bru R (2005) Purification and kinetic characterization of polyphenol oxidase from tomato fruits (Lycopersicon esculentum cv. Muchamiel). J Food Biochem 29:381–401

    Article  CAS  Google Scholar 

  • Chance B, Maehly AC (1955) Assay of catalase and peroxidases. Meth Enzymol 2:764–775

    Article  Google Scholar 

  • Cortleven A, Schmülling T (2015) Regulation of chloroplast development and function by cytokinin. J Exp Bot 66:4999–5013

    Article  CAS  PubMed  Google Scholar 

  • Dawson IK, Russell J, Powell W, Steffenson B, Thomas WT, Waugh R (2015) Barley: a translational model for adaptation to climate change. New Phytol 206:913–931

    Article  PubMed  Google Scholar 

  • de Araújo NO, de Sousa Santos MN, de Araujo FF, Véras ML, de Jesus Tello JP, da Silva AR, Fugate KK, Finger FL (2021) Balance between oxidative stress and the antioxidant system is associated with the level of cold tolerance in sweet potato roots. Postharvest Biol Technol 172:111359

    Article  Google Scholar 

  • Demidchik V, Straltsova D, Medvedev SS, Pozhvanov GA, Sokolik A, Yurin V (2014) Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. J Exp Bot 65:1259–1270

    Article  CAS  PubMed  Google Scholar 

  • Demmig-Adams B, Adams WW III (2006) Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytol 172:11–21

    Article  CAS  PubMed  Google Scholar 

  • Dickerson DP, Pascholati SF, Hagerman AE, Butler LG, Nicholson RL (1984) Phenylalanine ammonia-lyase and hydroxycinnamate: CoA ligase in maize mesocotyls inoculated with Helminthosporium maydis or Helminthosporium carbonum. Physiol Plant Pathol 25:111–123

    Article  CAS  Google Scholar 

  • Du Jardin P (2015) Plant biostimulants: Definition, concept, main categories and regulation. Sci Hortic 196:3–14

    Article  Google Scholar 

  • Ertani A, Francioso O, Tinti A, Schiavon M, Pizzeghello D, Nardi S (2018) Evaluation of seaweed extracts from Laminaria and Ascophyllum nodosum spp. as biostimulants in Zea mays L. using a combination of chemical, biochemical and morphological approaches. Front Plant Sci 9:428

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol 59:309–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gusta LV, Wisniewski M, Nesbitt NT, Gusta ML (2004) The effect of water, sugars, and proteins on the pattern of ice nucleation and propagation in acclimated and nonacclimated canola leaves. Plant Physiol 135:1642–1653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajiboland R, Joudmand A, Aliasgharzad N, Tolrá R, Poschenrieder C (2019) Arbuscular mycorrhizal fungi alleviate low-temperature stress and increase freezing resistance as a substitute for acclimation treatment in barley. Crop Pasture Sci 70:218–233

    Article  CAS  Google Scholar 

  • Hajiboland R (2013) Role of arbuscular mycorrhiza in amelioration of salinity. In: Ahmad P, Azooz MM, Prasad MNV (eds) Salt Stress in Plants: Signalling, Omics and Adaptations. Springer, New York, pp 301–354

    Chapter  Google Scholar 

  • Hajiboland R (2014) Reactive oxygen species and photosynthesis. In: Ahmad P (ed) Oxidative Damage to Plants: Antioxidant Networks and Signaling. Academic Press, NY, pp 1–63

    Google Scholar 

  • Hajiboland R (2022) Silicon-mediated cold stress tolerance in plants. In: Etesami H, Al Saeedi AH, El-Ramady H, Fujita M, Pessarakli M, Anwar Hossain M (eds) Silicon and Nano-Silicon in Environmental Stress Management and Crop Quality Improvement. Academic Press, NY, pp 161–180

    Chapter  Google Scholar 

  • Heidarvand L, Maali Amiri R, Naghavi MR, Farayedi Y, Sadeghzadeh B, Alizadeh K (2011) Physiological and morphological characteristics of chickpea accessions under low temperature stress. Russ J Plant Physiol 58:157–163

    Article  CAS  Google Scholar 

  • Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611

    Article  CAS  Google Scholar 

  • Janas KM, Cvikrová M, Pałagiewicz A, Szafranska K, Posmyk MM (2002) Constitutive elevated accumulation of phenylpropanoids in soybean roots at low temperature. Plant Sci 163:369–373

    Article  CAS  Google Scholar 

  • Janmohammadi M, Zolla L, Rinalducci S (2015) Low temperature tolerance in plants: changes at the protein level. Phytochemistry 117:76–89

    Article  CAS  PubMed  Google Scholar 

  • Jaškūnė K, Armonienė R, Liatukas Ž, Statkevičiūtė G, Cesevičienė J, Brazauskas G (2022) Relationship between freezing tolerance and leaf growth during acclimation in winter wheat. Agronomy 12:859

    Article  Google Scholar 

  • Johnson CM, Stout PR, Broyer TC, Carlton AB (1957) Comparative chlorine requirements of different plant species. Plant Soil 8:337–353

    Article  CAS  Google Scholar 

  • Kaplan F, Guy CL (2004) β-Amylase induction and the protective role of maltose during temperature shock. Plant Physiol 135:1674–1684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosová K, Vítámvás P, Prášil IT (2014) Proteomics of stress responses in wheat and barley—search for potential protein markers of stress tolerance. Front Plant Sci 5:711

    Article  PubMed  PubMed Central  Google Scholar 

  • Lehmann U, Wienkoop S, Tschoep H, Weckwerth W (2008) If the antibody fails–a mass western approach. Plant J 55:1039–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lichtenthaler HK, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 11:591–592

    Article  CAS  Google Scholar 

  • Liu H, Ouyang B, Zhang J, Wang T, Li H, Zhang Y, Yu C, Ye Z (2012) Differential modulation of photosynthesis, signaling, and transcriptional regulation between tolerant and sensitive tomato genotypes under cold stress. PLoS One 7:e50785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Luo L, Zheng L (2018) Lignins: biosynthesis and biological functions in plants. Int J Mol Sci 19:335

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Q, **n D, ** L, Gu T, Jia Z, Zhang B, Kou L (2022) Novel applications of exogenous melatonin on cold stress mitigation in postharvest cucumbers. J Agric Food Res 10:100459

    CAS  Google Scholar 

  • Liu Y, Dang P, Liu L, He C (2019) Cold acclimation by the CBF–COR pathway in a changing climate: Lessons from Arabidopsis thaliana. Plant Cell Rep 38:511–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukatkin AS (2002a) Contribution of oxidative stress to the development of cold-induced damage to leaves of chilling-sensitive plants: 1. Reactive oxygen species formation during plant chilling. Russ J Plant Physiol 49:622–627

    Article  CAS  Google Scholar 

  • Lukatkin AS (2002b) Contribution of oxidative stress to the development of cold-induced damage to leaves of chilling-sensitive plants: 2. The activity of antioxidant enzymes during plant chilling. Russ J Plant Physiol 49:782–788

    Article  CAS  Google Scholar 

  • Lukatkin AS (2003) Contribution of oxidative stress to the development of cold-induced damage to leaves of chilling-sensitive plants: 3. Injury of cell membranes by chilling temperatures. Russ J Plant Physiol 50:243–246

    Article  CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  • Michalak I, Chojnacka K (2014) Algal extracts: Technology and advances. Eng Life Sci 14:581–591

    Article  CAS  Google Scholar 

  • Moura JC, Bonine CA, de Oliveira Fernandes Viana J, Dornelas MC, Mazzafera P (2010) Abiotic and biotic stresses and changes in the lignin content and composition in plants. J Integr Plant Biol 52:360–376

  • Muller P, Li XP, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murchie EH, Lawson T (2013) Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J Exp Bot 64:3983–3998

    Article  CAS  PubMed  Google Scholar 

  • Nair P, Kandasamy S, Zhang J, Ji X, Kirby C, Benkel B, Hodges MD, Critchley AT, Hiltz D, Prithiviraj B (2012) Transcriptional and metabolomic analysis of Ascophyllum nodosum mediated freezing tolerance in Arabidopsis thaliana. BMC Genom 13:1–23

    Article  Google Scholar 

  • Neto JM, Pereira L (2015) Marine algae biodiversity, taxonomy, environmental assessment, and biotechnology. CRC Press, Boca Raton

    Google Scholar 

  • Ohya T, Morimura Y, Saji H, Mihara T, Ikawa T (1997) Purification and characterization of ascorbate peroxidase in roots of Japanese radish. Plant Sci 125:137–145

    Article  CAS  Google Scholar 

  • Oslan SN, Shoparwe NF, Yusoff AH, Rahim AA, Chang CS, Tan JS, Oslan SN, Arumugam K, Ariff AB, Sulaiman AZ, Mohamed MS (2021) A review on Haematococcus pluvialis bioprocess optimization of green and red stage culture conditions for the production of natural astaxanthin. Biomolecules 11:256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira DM, Valentão P, Pereira JA, Andrade PB (2009) Phenolics: From chemistry to biology. Molecules 14:2202–2211

    Article  CAS  PubMed Central  Google Scholar 

  • Porcel R, Aroca R, Ruiz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron Sustain Dev 32:181–200

    Article  CAS  Google Scholar 

  • Rammuni MN, Ariyadasa TU, Nimarshana PH, Attalage RA (2019) Comparative assessment on the extraction of carotenoids from microalgal sources: Astaxanthin from H. pluvialis and β-carotene from D. salina. Food Chem 277:128–134

    Article  CAS  PubMed  Google Scholar 

  • Ratajczak K, Sulewska H, Panasiewicz K, Faligowska A, Szymańska G (2023) Phytostimulator application after cold stress for better maize (Zea mays L.) plant recovery. Agriculture 13:569

  • Rivero RM, Ruiz JM, Garcıa PC, Lopez-Lefebre LR, Sánchez E, Romero L (2001) Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci 160:315–321

    Article  CAS  PubMed  Google Scholar 

  • Ruelland E, Vaultier MN, Zachowski A, Hurry V (2009) Cold signalling and cold acclimation in plants. Adv Bot Res 49:35–150

    Article  CAS  Google Scholar 

  • Sargazi F (2021) Morphological diversity of Sargassum species of Oman Sea coasts. Iran J Bot 27:62–70

    Google Scholar 

  • Sariñana-Aldaco O, Benavides-Mendoza A, Robledo-Olivo A, González-Morales S (2022) The biostimulant effect of hydroalcoholic extracts of Sargassum spp. in tomato seedlings under salt stress. Plants 11:3180

  • Shahriari AG, Mohkami A, Niazi A, Parizipour MH, Habibi-Pirkoohi M (2021) Application of brown algae (Sargassum angustifolium) extract for improvement of drought tolerance in canola (Brassica napus L.). Iran J Biotechnol 19:e2775

  • Shakiba A, Raeini Sarjaz M, Matkan A, Rahimi M, Dasht A, Hoseini Asl A (2020) Analysis of climatic zoning of the Persian Gulf and Oman Sea basins based on the Koppen-Trewartha classification scheme with climate change approach. J Climate Res 10:1–11 (in Persian)

    Google Scholar 

  • Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng B (2019) Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 24:2452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sicher R (2011) Carbon partitioning and the impact of starch deficiency on the initial response of Arabidopsis to chilling temperatures. Plant Sci 181:167–176

    Article  CAS  PubMed  Google Scholar 

  • Solecka D, Kacperska A (2003) Phenylpropanoid deficiency affects the course of plant acclimation to cold. Physiol Plant 119:253–262

    Article  CAS  Google Scholar 

  • Strand Å, Foyer CH, Gustafsson P, Gardeström P, Hurry V (2003) Altering flux through the sucrose biosynthesis pathway in transgenic Arabidopsis thaliana modifies photosynthetic acclimation at low temperatures and the development of freezing tolerance. Plant Cell Environ 26:523–535

    Article  CAS  Google Scholar 

  • Swain T, Hillis WE (1959) The phenolic constituents of Prunus domestica. I.—The quantitative analysis of phenolic constituents. J Sci Food Agric 10:63–68

    Article  CAS  Google Scholar 

  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  CAS  PubMed  Google Scholar 

  • Tantau H, Balko C, Brettschneider B, Melz G, Dörffling K (2004) Improved frost tolerance and winter survival in winter barley (Hordeum vulgare L.) by in vitro selection of proline overaccumulating lines. Euphytica 139:19–32

    Article  CAS  Google Scholar 

  • Tarkowski ŁP, Van den Ende W (2015) Cold tolerance triggered by soluble sugars: a multifaceted countermeasure. Front Plant Sci 6:203

    Article  PubMed  PubMed Central  Google Scholar 

  • Thalhammer A, Hincha DK, Zuther E (2014) Measuring freezing tolerance: Electrolyte leakage and chlorophyll fluorescence assays. In: Hincha D, Zuther E (eds) Plant Cold Acclimation. Humana Press, N Y, pp 15–24

    Chapter  Google Scholar 

  • Thalmann M, Santelia D (2017) Starch as a determinant of plant fitness under abiotic stress. New Phytol 214:943–951

    Article  CAS  PubMed  Google Scholar 

  • Theocharis A, Clément C, Barka EA (2012) Physiological and molecular changes in plants grown at low temperatures. Planta 235:1091–1105

    Article  CAS  PubMed  Google Scholar 

  • Uemura M, Warren G, Steponkus PL (2003) Freezing sensitivity in the sfr4 mutant of Arabidopsis is due to low sugar content and is manifested by loss of osmotic responsiveness. Plant Physiol 131:1800–1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaitkevičiūtė G, Aleliūnas A, Gibon Y, Armonienė R (2022) The effect of cold acclimation, deacclimation and reacclimation on metabolite profiles and freezing tolerance in winter wheat. Front Plant Sci 13:959118

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Oosten MJ, Pepe O, De Pascale S, Silletti S, Maggio A (2017) The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem Biol Technol Agric 4:5

    Google Scholar 

  • Vera J, Castro J, Gonzalez A, Moenne A (2011) Seaweed polysaccharides and derived oligosaccharides stimulate defense responses and protection against pathogens in plants. Mar Drugs 9:2514–2525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waqas MA, Khan I, Akhter MJ, Noor MA, Ashraf U (2017) Exogenous application of plant growth regulators (PGRs) induces chilling tolerance in short-duration hybrid maize. Environ Sci Pollut Res 24:11459–11471

    Article  CAS  Google Scholar 

  • Wehr JD, Sheath RG, Kociolek JP (2015) Freshwater algae of North America: Ecology and classification, 2nd edn. Academic Press, NY

    Google Scholar 

  • Xu J, Chen Z, Wang F, Jia W, Xu Z (2020) Combined transcriptomic and metabolomic analyses uncover rearranged gene expression and metabolite metabolism in tobacco during cold acclimation. Sci Rep 10:5242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yakhin OI, Lubyanov AA, Yakhin IA, Brown PH (2017) Biostimulants in plant science: a global perspective. Front Plant Sci 7:2049

    Article  PubMed  PubMed Central  Google Scholar 

  • Yano R, Nakamura M, Yoneyama T, Nishida I (2005) Starch-related α-glucan/water dikinase is involved in the cold-induced development of freezing tolerance in Arabidopsis. Plant Physiol 138:837–846

  • Yemm EW, Willis A (1954) The estimation of carbohydrates in plant extracts by anthrone. Biochem J 57:508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge University of Tabriz for financial support of this work.

Funding

This work was supported by a research grant to R.H. (grant No. 3.408447/3.61001) from the Ministry of Science, Research and Technology (I.R. Iran).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: B.A., N.S and R.H; Methodology: B.A. and N.S; Formal analysis and investigation: B.A. and N.S; Writing the manuscript: R.H.; Funding acquisition: R.H.

Corresponding author

Correspondence to Roghieh Hajiboland.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babazadeh, B.A., Sadeghzadeh, N. & Hajiboland, R. The impact of algal extract as a biostimulant on cold stress tolerance in barley (Hordeum vulgare L.). J Appl Phycol 35, 2919–2933 (2023). https://doi.org/10.1007/s10811-023-03107-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-023-03107-8

Keywords

Navigation