Log in

The effect of drying process on undervalued brown and red seaweed species: elemental composition

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The influence of drying (sun-drying and shade-drying) on the elemental composition of two brown seaweeds (Treptacantha abies-marina, Cystoseira humilis) and two red seaweed species (Asparagopsis armata and Asparagopsis taxiformis) harvested in the Faial Island (Azores Islands, Portugal) was assessed. The contents of sixteen nutritionally and toxicologically relevant elements were determined: sodium (Na), magnesium (Mg), phosphorus (P), sulphur (S), potassium (K), calcium (Ca), chromium (Cr), manganese (Mn), iron (Fe), copper (Cu), zinc (Zn), arsenic (As), bromine (Br), cadmium (Cd), iodine (I), and lead (Pb). While the most abundant macroelement in T. abies-marina and C. humilis was K (64.1–71.0 g kg−1 dw), for both Asparagopsis species, this position was held by Na (85.6–115.3 g kg−1 dw). Iodine content did not surpass 0.1 g kg−1 dw in the brown seaweeds and varied between 4.6 and 5.7 g kg−1 dw in Asparagopsis species. The I Dietary Reference Intake may be ensured by less than 1 g of dried A. armata or A. taxiformis per week. For T. abies-marina and C. humilis, 10.5 g or more of dried seaweed per week may be required. However, excessive I can be a health risk: 1–2 g of dried A. armata or A. taxiformis per week may result in I-related health risks. Moreover, there are As-related health risks for the consumption of C. humilis and, especially, T. abies-marina. The type of drying did not show a clear effect upon the elemental composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data is made available upon request.

References

  • Afonso C, Cardoso C, Ripol A, Varela J, Quental-Ferreira H, Pousão-Ferreira P, Ventura MS, Delgado IM, Coelho I, Castanheira I, Bandarra NM (2018) Composition and bioaccessibility of elements in green seaweeds from fish pond aquaculture. Food Res Int 105:271–277

    Article  CAS  PubMed  Google Scholar 

  • Afonso C, Guarda I, Mourato M, Martins LL, Fonseca I, Gomes R, Matos J, Gomes A, Bandarra NM, Cardoso C (2020) Treptacantha abies-marina (S.G. Gmelin) Kützing: characterization and application as a whole food ingredient. J Aq Food Prod Technol 29:964–980

    Article  CAS  Google Scholar 

  • Afonso C, Matos J, Campos AM, Gomes R, Coelho I, Delgado I, Castanheira I, Bandarra NM, Cardoso C (2021) Elemental composition and bioaccessibility of three insufficiently studied Azorean macroalgae. Int J Food Sci Technol 56:330–341

    Article  CAS  Google Scholar 

  • Algaebase (2018) Global algal database of taxonomic, nomenclatural and distributional information. http://www.algaebase.org/ Accessed on 19th September 2018

  • Al-Shwafi NA, Rushdi AI (2008) Heavy metal concentrations in marine green, brown, and red seaweeds from coastal waters of Yemen, the Gulf of Aden. Environ Geol 55:653–660

    Article  CAS  Google Scholar 

  • Alves C, Pinteus S, Horta A, Pedrosa R (2016) High cytotoxicity and anti-proliferative activity of algae extracts on an in vitro model of human hepatocellular carcinoma. Springerplus 5:1339

    Article  PubMed  PubMed Central  Google Scholar 

  • Andersson M, Karumbunathan V, Zimmermann MB (2012) Global iodine status in 2011 and trends over the past decade. J Nutr 142:744–750

    Article  CAS  PubMed  Google Scholar 

  • Andrade PB, Barbosa M, Matos RP, Lopes G, Vinholes J, Mouga T, Valentão P (2013) Valuable compounds in macroalgae extracts. Food Chem 138:1819–1828

    Article  CAS  PubMed  Google Scholar 

  • AOAC (2000) Official methods of analysis, 17th edn. Association of Analytical Chemists, Gaithersburg, MD USA

    Google Scholar 

  • Barreto C, Mendonça E, Gouveia V, Anjos C, Medeiros JS, Seca A, Neto AI (2012) Macroalgae from S. Miguel Island as a potential source of antiproliferative and antioxidant products. Arquipelago Life Mar Sci 29:53–58

    Google Scholar 

  • Caliceti M, Argese E, Sfriso A, Pavoni B (2002) Heavy metal contamination in the seaweeds of the Venice lagoon. Chemosphere 47:443–454

    Article  CAS  PubMed  Google Scholar 

  • CEN, Comité Européen de Normalisation (2007) EN 15111:2007 Foodstuffs - determination of trace elements - determination of iodine by ICP-MS (inductively coupled plasma mass spectrometry). Comité Européen de Normalisation: Brussels, Belgium. 12 p

  • Chan JC-C, Cheung PC-K, Ang PO (1997) Comparative studies on the effect of three drying methods on the nutritional composition of seaweed Sargassum hemiphyllum (Turn) C. Ag. J Agric Food Chem 45:3056–3059

    Article  CAS  Google Scholar 

  • Circuncisão AR, Catarino MD, Cardoso SM, Silva AMS (2018) Minerals from macroalgae origin: health benefits and risks for consumers. Mar Drugs 16:400

    Article  PubMed Central  CAS  Google Scholar 

  • Custódio L, Silvestre L, Rocha MI, Rodrigues MJ, Vizetto-Duarte C, Pereira H, Barreira L, Varela J (2016) Methanol extracts from Cystoseira tamariscifolia and Cystoseira nodicaulis are able to inhibit cholinesterases and protect a human dopaminergic cell line from hydrogen peroxide-induced cytotoxicity. Pharm Biol 54:1687–1696

    Article  PubMed  CAS  Google Scholar 

  • EFSA Contam Panel, EFSA Panel on Contaminants in the Food Chain (2014) Scientific opinion on the risks to public health related to the presence of chromium in food and drinking water. EFSA J 12:3595

    Google Scholar 

  • EFSA, European Food Safety Authority (2011) EFSA J 9:1975

  • EFSA, European Food Safety Authority (2013) Scientific opinion on dietary reference values for manganese. EFSA J 11:3419

    Google Scholar 

  • EFSA, European Food Safety Authority (2014) Scientific opinion on dietary reference values for zinc. EFSA J 12:3844

    Article  CAS  Google Scholar 

  • EFSA, European Food Safety Authority (2015a) Scientific opinion on dietary reference values for copper. EFSA J 13:4253

    Article  CAS  Google Scholar 

  • EFSA, European Food Safety Authority (2015b) Scientific opinion on dietary reference values for iron. EFSA J 13:4254

    Article  CAS  Google Scholar 

  • El-Baroty GS, Moussa MY, Shallan MA, Ali MA, Sabh AZ, Shalaby EA (2007) Contribution to the aroma, biological activities, minerals, protein, pigments and lipid contents of the red alga: Asparagopsis taxiformis (Delile) Trevisan. J Appl Sci Res 3:1825–1834

    Google Scholar 

  • EU (European Union) (2012) Regulation 744/2012 amending Annexes I & II to Directive 2002/32/EC of the European Parliament and of the Council as regards maximum levels for arsenic, fluorine, lead, mercury, endosulfan, dioxins, Ambrosia spp., diclazuril and lasalocid A sodium and action thresholds for dioxins. OJ L 219:5–12

    Google Scholar 

  • FAO/WHO (1988) Report of the joint meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and a WHO Expert Group on Pesticide Residues. FAO, Geneva

  • FAO/WHO, Joint FAO/WHO Expert Committee on Food Additives (2010) Seventy third meeting, Geneva, 8–17 June 2010. Summary and Conclusions. Issued 24th June 2010

  • Fonseca I, Guarda I, Mourato M, Martins LL, Gomes R, Matos J, Gomes-Bispo A, Bandarra NM, Cardoso C, Afonso C (2021) Undervalued Atlantic brown seaweed species (Cystoseira abies-marina and Zonaria tournefortii): influence of treatment on their nutritional and bioactive potential and bioaccessibility. Eur Food Res Technol 247:221–232

    Article  CAS  Google Scholar 

  • Francesconi KA, Edmonds JS (1996) Arsenic and marine organisms. Adv Inorg Chem 44:147–189

    Article  Google Scholar 

  • Francisco J, Cardoso C, Bandarra N, Brito P, Horta A, Pedrosa R, Gil MM, Delgado IM, Castanheira I, Afonso C (2018) Bioaccessibility of target essential elements and contaminants from Fucus spiralis. J Food Comp Anal 74:10–17

    Article  CAS  Google Scholar 

  • Genovese G, Tedone L, Hamann MT, Morabito M (2009) The Mediterranean red alga Asparagopsis: a source of compounds against Leishmania. Mar Drugs 7:361–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta S, Cox S, Abu-Ghannam N (2011) Effect of different drying temperatures on the moisture and phytochemical constituents of edible Irish brown seaweed. LWT Food Sci Technol 44:1266–1272

    Article  CAS  Google Scholar 

  • Haug A (1961) The affinity of some divalent metals to different types of alginates. Acta Chem Scand 8:1794–1795

    Article  Google Scholar 

  • Holdt SL, Kraan S (2011) Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol 23:543–597

    Article  CAS  Google Scholar 

  • Ifie I, Olatunde S, Ogbon O, Umukoro JE (2021) Processing techniques on phytochemical content, proximate composition, and toxic components in duckweed. Int J Veg Sci 27:294–302

    Article  Google Scholar 

  • IOM (Institute of Medicine) (2001) Dietary Reference Intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Food and Nutrition Board. National Academy Press, Washington, D.C.

    Google Scholar 

  • IOM (Institute of Medicine) (2004) Dietary Reference Intakes (DRIs): recommended intakes for individuals. Vitamins. Institute of Medicine (https://web.archive.org/web/20091030004039/http://iom.edu/en/Global/News%20Announcements/~/media/Files/Activity%20Files/Nutrition/DRIs/DRISummaryListing2.ashx). Accessed 18 May 2020

  • Julião DR, Afonso C, Gomes-Bispo A, Bandarra NM, Cardoso C (2021) The effect of drying process on undervalued brown and red seaweed species: bioactivity alterations. Phycol Res 69:246–257

    Article  CAS  Google Scholar 

  • Kadam U, Álvarez C, Tiwari B, Donnell CPO (2015) Processing of seaweeds. In: Tiwari BK, Troy DJ (eds) Seaweed sustainability: food and non-food applications. Academic Press, Amsterdam, pp 61–78

    Chapter  Google Scholar 

  • Kolb N, Vallorani L, Milanovic N, Stocchi V (2004) Evaluation of marine algae wakame (Undaria pinnatifida) and kombu (Laminaria digitata japonica) as food supplements. Food Technol Biotechnol 42:57–61

    CAS  Google Scholar 

  • Kladi M, Vagias C, Roussis V (2004) Volatile halogenated metabolites from marine red algae. Phytochem Rev 3:337–366

    Article  CAS  Google Scholar 

  • La Barre S, Potin P, Leblanc C, Delage L (2010) The halogenated metabolism of brown algae (Phaeophyta), its biological importance and its environmental significance. Mar Drugs 8:988–1010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laird BD, Chan HM (2013) Bioaccessibility of metals in fish, shellfish, wild game, and seaweed harvested in British Columbia, Canada. Food Chem Toxicol 58:381–387

    Article  CAS  PubMed  Google Scholar 

  • Le Lann K, Jégou C, Stiger-Pouvreau V (2008) Effect of different conditioning treatments on total phenolic content and antioxidant activities in two Sargassacean species: comparison of the frondose Sargassum muticum (Yendo) Fensholt and the cylindrical Bifurcaria bifurcata R Ross. Phycol Res 56:238–245

    Article  CAS  Google Scholar 

  • Ma Z, Lin L, Wu M, Yu H, Shang T, Zhang T, Zhao M (2018) Total and inorganic arsenic contents in seaweeds: absorption, accumulation, transformation and toxicity. Aquaculture 497:49–55

    Article  CAS  Google Scholar 

  • Mabeau S, Fleurence J (1993) Seaweed in food products: biochemical and nutritional aspects. Trends Food Sci Technol 4:103–107

    Article  CAS  Google Scholar 

  • Machado L, Magnusson M, Paul NA, de Nys R, Tomkins N (2014) Effects of marine and freshwater macroalgae on in vitro total gas and methane production. PLOS One 9:e85289

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Machado L, Kinley RD, Magnusson M, de Nys R, Tomkins NW (2015) The potential of macroalgae for beef production systems in Northern Australia. J Appl Phycol 27:2001–2005

    Article  CAS  Google Scholar 

  • Manev ZK, Petkova NT (2021) Component composition and antioxidant potential of Cystoseira barbata from the Black Sea. Bull Transilvania University of Braşov Ser II 14(63):163–172

  • NRC (National Research Council) (2000) Dietary Reference Intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Academies Press: Washington, DC pp 258–259

  • Nunes N, Valente S, Ferraz S, Barreto MC, de Carvalho MAAP (2018) Nutraceutical potential of Asparagopsis taxiformis (Delile) Trevisan extracts and assessment of a downstream purification strategy. Heliyon 4:e00957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oucif H, Benaissa M, Mehidi SA, Prego R, Aubourg SP, Abi-Ayad S-ME-A (2020) Chemical composition and nutritional value of different seaweeds from the west Algerian coast. J Aq Food Prod Technol 29:90–104

    Article  CAS  Google Scholar 

  • Pereira L (2016) Edible seaweeds of the world. CRC Press, Boca Raton, Boca Raton, p 453

    Book  Google Scholar 

  • Roque BM, Brooke CG, Ladau J, Polley T, Marsh LJ, Najafi N, Pandey P, Singh L, Kinley R, Salwen JK, Eloe-Fadrosh E, Kebreab E, Hess M (2019a) Effect of the macroalgae Asparagopsis taxiformis on methane production and rumen microbiome assemblage. Anim Microbiome 1:1–14

    Google Scholar 

  • Roque BM, Salwen JK, Kinley R, Kebreab E (2019b) Inclusion of Asparagopsis armata in lactating dairy cows’ diet reduces enteric methane emission by over 50 percent. J Clean Prod 234:132–138

    Article  CAS  Google Scholar 

  • Rupérez P (2002) Mineral content of edible marine seaweeds. Food Chem 79:23–26

    Article  Google Scholar 

  • Santos S, Ungureanu G, Volf I, Boaventura RAR, Botelho CMS (2018) Macroalgae biomass as sorbent for metal ions. In: Popa V, Volf I (eds) Biomass as renewable raw material to obtain bioproducts of high-tech value. Elsevier, Amsterdam, pp 69–112

    Chapter  Google Scholar 

  • SCF (Scientific Committee on Food) (2002) Opinion of the scientific committee on food on the tolerable upper intake level of zinc. SCF/CS/NUT/UPPLEV/62 Final, 18 pp

  • SCF (Scientific Committee on Food) (2003) Opinion of the scientific committee on food on the tolerable upper intake level of copper. 10 pp

  • Squadrone S, Brizio P, Battuello M, Nurra N, Sartor RM, Riva A, Staiti M, Benedetto A, Pessani D, Abete MC (2018) Trace metal occurrence in Mediterranean seaweeds. Environ Sci Pollut Res 25:9708–9721

    Article  CAS  Google Scholar 

  • Van Netten C, Cann SAH, Morley DR, van Netten JP (2000) Elemental and radioactive analysis of commercially available seaweed. Sci Total Environ 255:169–175

    Article  PubMed  Google Scholar 

  • Vizetto-Duarte C, Custódio L, Barreira L, da Silva MM, Rauter AP, Albericio F, Varela J (2016) Proximate biochemical composition and mineral content of edible species from the genus Cystoseira in Portugal. Bot Mar 59:251–257

  • World Health Organization and WHO (1989) Toxicological evaluation of certain food additives and contaminants. WHO, Geneva

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to seaExpert for the collection of the seaweed samples and to Artur Oliveira for the identification and harvesting of the seaweed samples as well as supplied photos.

Funding

This work was supported by the following grants: Ref. SFRH/BPD/102689/2014 (“Fundação para a Ciência e a Tecnologia”, FCT) for Carlos Cardoso and DIVERSIAQUA (MAR2020, Ref.: 16–02-01-FEAM-66) for Cláudia Afonso. The experimental work was funded by the projects AQUAMAX (Ref.: 16–02-01-FMP-0047) and I9 + PROALGA (Ref.: 16–01-03-FMP-0011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Cardoso.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afonso, C., Julião, D.R., Pinto, E. et al. The effect of drying process on undervalued brown and red seaweed species: elemental composition. J Appl Phycol 34, 1749–1761 (2022). https://doi.org/10.1007/s10811-022-02741-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-022-02741-y

Keywords

Navigation