Log in

Mixotrophic production of polyunsaturated fatty acids and carotenoids by the microalga Nannochloropsis gaditana

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Microalgae are potential sources of high-value lipids and colorants for use in foods, cosmetics, and other applications. Biomass and metabolite productivities of photoautotrophic algae cultures are low because of limited availability of light. Therefore, mixotrophic cultures were investigated in parallel with photoautotrophic controls. In mixotrophy, some of the energy and carbon are supplied in the form of dissolved organic substrates in addition to inorganic carbon and light being available. The aim was to compare productivities of biomass, fatty acids, and carotenoid pigments in outdoor and indoor mixotrophic and photoautotrophic batch and continuous cultures. The edible and safe marine microalga Nannochloropsis gaditana was used in these studies. The alga could be grown mixotrophically using glucose and glycerol, but not acetate. Optimal concentrations of the organic carbon sources were 5 g L−1 for glucose and 1 g L−1 for glycerol. Mixotrophy substantially increased the biomass concentration and productivity relative to photoautotrophy. The maximum biomass productivity in mixotrophic batch cultures using glucose or glycerol was identical at 170 mg L−1 day−1, being 30% greater than control cultures. In continuous outdoor culture with glucose (5 g L−1) mixotrophy at 12 °C, the total carotenoids in the biomass were 83% higher compared to photoautotrophic control biomass, and the eicosapentaenoic acid (EPA) productivity was 2.2-fold higher relative to controls. The maximum EPA productivity was 11 mg L−1 day−1. Glucose mixotrophy increased the total lipids content in the biomass by 34% relative to photoautotrophic operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bailey JE, Ollis DF (1986) Biochemical engineering fundamentals, second edition. McGraw-Hill, New York

    Google Scholar 

  • Bouyam S, Choorit W, Sirisansaneeyakul S, Chisti Y (2017) Heterotrophic production of Chlorella sp. TISTR 8990—biomass growth and composition under various production conditions. Biotechnol Prog 33:1589–1600

    Article  CAS  PubMed  Google Scholar 

  • Camacho-Rodríguez J, Cerón-García MC, González-López CV, Fernández-Sevilla JM, Contreras-Gómez A, Molina-Grima E (2013) A low-cost culture medium for the production of Nannochloropsis gaditana biomass optimized for aquaculture. Bioresour Technol 144:57–66

    Article  PubMed  CAS  Google Scholar 

  • Camacho-Rodríguez J, González-Céspedes AM, Cerón-García MC, Fernández-Sevilla JM, Acién-Fernández FG, Molina-Grima E (2014) A quantitative study of eicosapentaenoic acid (EPA) production by Nannochloropsis gaditana for aquaculture as a function of dilution rate, temperature and average irradiance. Appl Microbiol Biotechnol 98:2429–2440

    Article  PubMed  CAS  Google Scholar 

  • Camacho-Rodríguez J, Cerón-García MC, Fernández-Sevilla JM, Molina-Grima E (2015a) Genetic algorithm for the medium optimization of the microalga Nannochloropsis gaditana cultured to aquaculture. Bioresour Technol 177:102–109

    Article  PubMed  CAS  Google Scholar 

  • Camacho-Rodríguez J, Cerón-García MC, Fernández-Sevilla JM, Molina-Grima E (2015b) The influence of culture conditions on biomass and high value product generation by Nannochloropsis gaditana in aquaculture. Algal Res 11:63–73

    Article  Google Scholar 

  • Cerón-García MC, García-Camacho F, Sánchez-Mirón A, Fernández-Sevilla JM, Chisti Y, Molina-Grima E (2006) Mixotrophic production of marine microalga Phaeodactylum tricornutum on various carbon sources. J Microbiol Biotechnol 16:689–694

    Google Scholar 

  • Cerón-García MC, Fernández-Sevilla JM, Sánchez-Mirón A, Garcia-Camacho F, Contreras-Gómez A, Molina-Grima E (2013) Mixotrophic growth of Phaeodactylum tricornutum on fructose and glycerol in fed-batch and semi-continuous modes. Bioresour Technol 147:569–576

    Article  PubMed  CAS  Google Scholar 

  • Cerón-García MC, González-López CV, Camacho-Rodríguez J, López-Rosales L, García-Camacho F, Molina-Grima E (2018) Maximizing carotenoid extraction from microalgae used as food additives and determined by liquid chromatography (HPLC). Food Chem 257:316–324

    Article  PubMed  CAS  Google Scholar 

  • Chapman SP, Paget CM, Johnson GN, Schwartz JM (2015) Flux balance analysis reveals acetate metabolism modulates cyclic electron flow and alternative glycolytic pathways in Chlamydomonas reinhardtii. Front Plant Sci 6:474

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheirsilp B, Torpee S (2012) Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour Technol 110:510–516

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2010) Fermentation technology. In: Soetaert W, Vandamme EJ (eds) Industrial biotechnology: sustainable growth and economic success. Wiley-VCH, New York, pp 149–171

    Chapter  Google Scholar 

  • Chisti Y (2013a) Raceways-based production of algal crude oil. Green 3:197–216

    Article  CAS  Google Scholar 

  • Chisti Y (2013b) Constraints to commercialization of algal fuels. J Biotechnol 167:201–214

    Article  CAS  PubMed  Google Scholar 

  • Chojnacka K, Marquez-Rocha FJ (2004) Kinetic and stoichiometric relationships of the energy and carbon metabolism in the culture of microalgae. Biotechnology 4:21–34

    Google Scholar 

  • Das P, Lei W, Aziz SS, Obbard JP (2011) Enhanced algae growth in both phototrophic and mixotrophic culture under blue light. Bioresour Technol 102:3883–3887

    Article  CAS  PubMed  Google Scholar 

  • Day JG, Edwards AP, Rodgers GA (1991) Development of an industrial scale process for the heterotrophic production of microalgal mollusc feed. Bioresour Technol 38:245–249

    Article  Google Scholar 

  • Dyall SC (2015) Long-chain omega-3 fatty acids and the brain: a review of the independent and shared effects of EPA, DPA and DHA. Front Aging Neurosci 7:52

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang X, Wei C, Zhao-Ling C, Fan O (2004) Effects of organic carbon sources on cell growth and eicosapentaenoic acid content of Nannochloropsis sp. J Appl Phycol 16:499–503

    Article  CAS  Google Scholar 

  • Ferreira M, Coutinho P, Seixas P, Fábregas J, Otero A (2009) Enriching rotifers with “premium” microalgae. Nannochloropsis gaditana. Mar Biotechnol 11:585–595

    Article  CAS  Google Scholar 

  • Hallenbeck PC, Grogger M, Mraz M, Veverka D (2015) The use of design of experiments and response surface methodology to optimize biomass and lipid production by the oleaginous marine green alga, Nannochloropsis gaditana in response to light intensity, inoculum size and CO2. Bioresour Technol 184:161–168

    Article  CAS  PubMed  Google Scholar 

  • Janssen JH, Lamers PP, de Vos RCH, Wijffels RH, Barbosa MJ (2019) Translocation and de novo synthesis of eicosapentaenoic acid (EPA) during nitrogen starvation in Nannochloropsis gaditana. Algal Res 7:138–144

    Article  Google Scholar 

  • Ledda C, Romero Villegas GI, Adani F, Acién Fernández FG, Molina Grima E (2015) Utilization of centrate from wastewater treatment for the outdoor production of Nannochloropsis gaditana biomass at pilot-scale. Algal Res 12:17–25

    Article  Google Scholar 

  • Letsiou S, Kalliampakou K, Gardikis K, Mantecon L, Infante C, Chatzikonstantinou M, Labrou NE, Flemetakis E (2017) Skin protective effects of Nannochloropsis gaditana extract on H2O2-stressed human dermal fibroblasts. Front Mar Sci 4:221

    Article  Google Scholar 

  • Li Y, Xu H, Han F, Mu J, Chen D, Feng B, Zeng H (2015) Regulation of lipid metabolism in the green microalga Chlorella protothecoides by heterotrophy–photoinduction cultivation regime. Bioresour Technol 192:781–791

    Article  CAS  PubMed  Google Scholar 

  • López AR, Rodríguez SB, Vallejo RA, García PG, Macías-Sánchez MD, Díaz MG, Librán RG, Acero FJF (2019) Sustainable cultivation of Nannochloropsis gaditana microalgae in outdoor raceways using flue gases for a complete 2-year cycle: a circular economy challenge. J Appl Phycol. https://doi.org/10.1007/s10811-018-1710-0

    Article  Google Scholar 

  • Lubián LM, Montero O (1998) Excess light-induced violaxanthin cycle activity in Nannochloropsis gaditana (Eustigmatophyceae): effects of exposure time and temperature. Phycologia 37:16–23

    Article  Google Scholar 

  • Moraes L, Rosa GM, Morillas España A, Santos LO, Morais MG, Molina Grima E, Costa JAV, Acién Fernández FG (2019) Engineering strategies for the enhancement of Nannochloropsis gaditana outdoor production: influence of the CO2 flow rate on the culture performance in tubular photobioreactors. Process Biochem 76:171–177

    Article  CAS  Google Scholar 

  • Neilson AH, Lewin RA (1974) The uptake and utilization of organic carbon by algae: an essay in comparative biochemistry. Phycologia 13:227–264

    Article  CAS  Google Scholar 

  • Pedersen TC, Gardner RD, Gerlach R, Peyton BM (2018) Assessment of Nannochloropsis gaditana growth and lipid accumulation with increased inorganic carbon delivery. J Appl Phycol 30:2155–2166

    Article  CAS  Google Scholar 

  • Perez-Garcia O, Escalante FME, de-Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45:11–36

    Article  CAS  PubMed  Google Scholar 

  • Ren M, Ogden K, Lian B (2013) Effect of culture conditions on the growth rate and lipid production of microalgae Nannochloropsis gaditana. J Renew Sust Energ 5:063138

    Article  CAS  Google Scholar 

  • Riveros K, Sepulveda C, Bazaes J, Marticorena P, Riquelme C, Acién G (2018) Overall development of a bioprocess for the outdoor production of Nannochloropsis gaditana for aquaculture. Aquac Res 49:165–176

    Article  CAS  Google Scholar 

  • Rodríguez-Ruiz J, Belarbi EH, Sánchez JLG, Alonso DL (1998) Rapid simultaneous lipid extraction and transesterification for fatty acid analyses. Biotechnol Tech 12:689–691

    Article  Google Scholar 

  • San Pedro A, González-López CV, Acién FG, Molina-Grima E (2014) Outdoor pilot-scale production of Nannochloropsis gaditana: influence of culture parameters and lipid production rates in tubular photobioreactors. Bioresour Technol 169:667–676

    Article  CAS  PubMed  Google Scholar 

  • San Pedro A, González-López CV, Acién FG, Molina-Grima E (2015) Outdoor pilot production of Nannochloropsis gaditana: influence of culture parameters and lipid production rates in raceway ponds. Algal Res 8:205–213

    Article  Google Scholar 

  • San Pedro A, González-López CV, Acién FG, Molina-Grima E (2016) Outdoor pilot production of Nannochloropsis gaditana: influence of culture parameters and lipid production rates in flat-panel photobioreactors. Algal Res 18:156–165

    Article  Google Scholar 

  • Schwartz AS, Brown R, Ajjawi I, McCarren J, Atilla S, Bauman N, Richardson TH (2018) Complete genome sequence of the model oleaginous alga Nannochloropsis gaditana CCMP1894. Genome Announc 6:e01448–e01417

    Article  PubMed  PubMed Central  Google Scholar 

  • Sforza E, Cipriani R, Morosinotto T, Bertucco A, Giacometti G (2012) Excess CO2 supply inhibits mixotrophic growth of Chlorella protothecoides and Nannochloropsis salina. Bioresour Technol 104:523–529

    Article  CAS  PubMed  Google Scholar 

  • Shah AR, Ahmad A, Srivastava S, Jaffar Ali BM (2017) Reconstruction and analysis of a genome-scale metabolic model of Nannochloropsis gaditana. Algal Res 26:354–364

    Article  Google Scholar 

  • Shene C, Chisti Y, Vergara D, Burgos C, Rubilar M (2016a) Bustamante M, Production of eicosapentaenoic acid by Nannochloropsis oculata: effects of carbon dioxide and glycerol. J Biotechnol 239, 47–56

    Article  CAS  PubMed  Google Scholar 

  • Shene C, Chisti Y, Bustamante M, Rubilar M (2016b) Effect of CO2 in the aeration gas on cultivation of the microalga Nannochloropsis oculata: experimental study and mathematical modeling of CO2 assimilation. Algal Res 13:16–29

    Article  Google Scholar 

  • Simionato D, Block MA, La Rocca N, Jouhet J, Maréchal E, Finazzi G, Morosinotto T (2013) The response of Nannochloropsis gaditana to nitrogen starvation includes de novo biosynthesis of triacylglycerols, a decrease of chloroplast galactolipids, and reorganization of the photosynthetic apparatus. Eukaryot Cell 12:665–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith RT, Bangert K, Wilkinson SJ, Gilmour DJ (2015) Synergistic carbon metabolism in a fast growing mixotrophic freshwater microalgal species Micractinium inermum. Biomass Bioenergy 82:73–86

    Article  CAS  Google Scholar 

  • Sung MG, Han JI, Lee B, Chang YK (2018) Wavelength shift strategy to enhance lipid productivity of Nannochloropsis gaditana. Biotechnol Biofuels 11:70

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was supported by the general secretariat of Universities, Research, and Technology of Andalucía Government (AGR-5334) and was co-financed with FEDER funds. Additional funding was provided by the Marine Microalgae Biotechnology Group (BIO173), the Spanish Ministry of Economy and Competitiveness (CTQ2014-55888-C3-02), and the European Regional Development Fund Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Cerón-García.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menegol, T., Romero-Villegas, G.I., López-Rodríguez, M. et al. Mixotrophic production of polyunsaturated fatty acids and carotenoids by the microalga Nannochloropsis gaditana. J Appl Phycol 31, 2823–2832 (2019). https://doi.org/10.1007/s10811-019-01828-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-019-01828-3

Keywords

Navigation