Log in

Urea-based fuel cells on paper with micro-watt power generation to drive low power circuits

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This work demonstrates the application of urea-powered paper-based fuel cells (PFCs) with Hydrogen Peroxide (H2O2) as the oxidant to drive a flexible electronic circuit (ring oscillator (RO)), for the first time. Herein, the electrochemical performance of four different PFCs has been studied by employing non-precious electrodes as the anode and cathode. These are the membraneless PFC with (i) Toray carbon paper (CP) (ii) Nickel (Ni)-mesh (iii) Nickel Cobalt nanoparticles supported on reduced Graphene Oxide loaded on the CP (Ni Co@rGo@CP) and (iv) membrane-based PFC with Ni Co@rGo@CP as the electrodes. In each PFC the same electrode is employed on both the sides. A single membraneless-PFC with Ni-Co@rGo@CP as electrodes delivered a peak power density (Pmax) of 55 µW cm−2, maximum current density (Jmax) of 371 µA cm−2 and an open-circuit voltage (OCV) of 0.7 V at 3 M urea. While, a single membrane-based PFC assembled on an anion exchange membrane with Ni-Co@rGo@CP electrodes, delivered a Pmax of ≈70 µW cm−2 and Jmax of ≈500 µA cm−2 at an OCV of 0.7 V with 3 M urea. Subsequently, a stack of two membrane-based PFCs delivered an OCV of ≈1.4 V for 400 s. Finally, this stack is employed as a power source to drive a RO. The measured frequency and peak-to-peak voltage are 37.52 kHz and 1.04 V, respectively. This demonstration opens a window to implement self-contained flexible electronic system using PFCs as the power source with minimal e-waste.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tanveer M, Ambreen T, Khan H, Kim GM, Park CW (2022) Paper-based microfluidic fuel cells and their applications: a prospective review. Energy Convers Manage 264:115732

    Article  CAS  Google Scholar 

  2. Lin Y, Gritsenko D, Liu Q, Lu X, Xu J (2016) Recent advancements in functionalized paper-based electronics. ACS Appl Mater Interfaces 8(32):20501–20515

    Article  CAS  PubMed  Google Scholar 

  3. Arun RK, Halder S, Chanda N, Chakraborty S (2014) A paper based self-pum** and self-breathing fuel cell using pencil stroked graphite electrodes. Lab Chip 14(10):1661–1664

    Article  CAS  PubMed  Google Scholar 

  4. Esquivel J, Del Campo F, De La Fuente JG, Rojas S, Sabate N (2014) Microfluidic fuel cells on paper: meeting the´ power needs of next generation lateral flow devices. Energy Environ Sci 7(5):1744–1749

    Article  CAS  Google Scholar 

  5. Esquivel J, Buser J, Lim C, Domınguez C, Rojas S, Yager P, Sabate N (2017) Single-use paper-based hydrogen´ fuel cells for point-of-care diagnostic applications. J Power Source 342:442–451

    Article  ADS  CAS  Google Scholar 

  6. Shen L-L, Zhang G-R, Venter T, Biesalski M, Etzold BJ (2019) Towards best practices for improving paper-based microfluidic fuel cells. Electrochim Acta 298:389–399

    Article  CAS  Google Scholar 

  7. Grey CP, Hall DS (2020) Prospects for lithium-ion batteries and beyond—a 2030 vision. Nat Commun 11(1):6279

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Carneiro LP, Pinto AM, Sales MGF (2023) Development of an innovative flexible paper-based methanol fuel cell (PB-DMFC) sensing platform–application to sarcosine detection. Chem Eng J 452:139563

    Article  CAS  Google Scholar 

  9. Rao LT, Dubey SK, Javed A, Goel S (2020) Development of membraneless paper-pencil microfluidic hydrazine fuel cell. Electroanalysis 32(11):2581–2588

    Article  CAS  Google Scholar 

  10. Luo S, Wang Y, Kong TC, Pan W, Zhao X, Leung DY (2021) Flexible direct formate paper fuel cells with high performance and great durability. J Power Sources 490:229526

    Article  CAS  Google Scholar 

  11. Yan X, Xu A, Zeng L, Gao P, Zhao T (2018) A paper-based microfluidic fuel cell with hydrogen peroxide as fuel and oxidant. Energ Technol 6(1):140–143

    Article  CAS  Google Scholar 

  12. Celik M (2022) An experimental study of the performance of a low-cost paper-based membraneless direct hydrogen peroxide fuel cell. Turkish J Eng 6(2):161–165

    Article  Google Scholar 

  13. Merino-Jimenez I, Llorella A, Navarro-Segarra M, Agramunt J, Grandas A, Minteer SD, Esquivel JP, Sabate N (2021) A self-powered minimalistic glucometer: A lean approach to sustainable single-use point-of-´ care devices. Adv Mater Technol 6(5):2001051

    Article  CAS  Google Scholar 

  14. Ishii SK, Boyer TH (2015) Life cycle comparison of centralized wastewater treatment and urine source separation with struvite precipitation: Focus on urine nutrient management. Water Res 79:88–103

    Article  CAS  PubMed  Google Scholar 

  15. Mankar C, Rewatkar P, Dhone M, Balpande S, Kalambe J, Pande R, Goel S (2019) Paper based microfluidic microbial fuel cell to harvest energy from urine. Sens Lett 17(1):69–74

    Article  Google Scholar 

  16. Sayed ET, Eisa T, Mohamed HO, Abdelkareem MA, Allagui A, Alawadhi H, Chae K-J (2019) Direct urea fuel cells: challenges and opportunities. J Power Sources 417:159–175

    Article  CAS  Google Scholar 

  17. Pei C, Chen S, Zhou M, Chen X, Sun B, Lan S, Hahn H, Feng T (2023) Direct urea/H2O2 fuel cell with a hierarchical porous nanoglass anode for high-efficiency energy conversion. ACS Appl Mater Interfaces 15(20):24319–24328

    Article  CAS  PubMed  Google Scholar 

  18. Chino I, Muneeb O, Do E, Ho V, Haan JL (2018) A paper microfluidic fuel cell powered by urea. J Power Sources 396:710–714

    Article  CAS  Google Scholar 

  19. L. Castillo-Mart´ınez, D. Amaya-Cruz, J. Gachuz, D. Ortega-D´ıaz, J. Olivares-Ram´ırez, D. Dector, A. DuarteMoller, A. Villa, A. Dector, Urea oxidation in a paper-based microfluidic fuel cell using escherichia coli anode electrode, in: Journal of Physics: Conference Series, Vol. 1119, IOP Publishing, 2018, p. 012004

  20. Vera-Estrada IL, Olivares-Ramırez JM, Rodrıguez-Resendiz J, Dector A, Mendiola-Santibanez JD, Amaya-Cruz DM, Sosa-Domınguez A, Ortega-Dıaz D, Dector D, Ovando-Medina VM et al (2022) Digital pregnancy test powered by an air-breathing paper-based microfluidic fuel cell stack using human urine as fuel. Sensors 22(17):6641

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xu W, Wu Z, Tao S (2016) Urea-based fuel cells and electrocatalysts for urea oxidation. Energ Technol 4(11):1329–1337

    Article  CAS  Google Scholar 

  22. Perez-Sosa M, Ramırez-Meneses E, Manzo-Robledo A, Mateos-Santiago J, Hernandez-Perez M, Garibay-Febles V, Lartundo-Rojas L, Zacahua-Tlacuatl G (2021) Enhanced performance of urea electro-oxidation in alkaline media on PtPdNi/C, PtNi/C, and Ni/C catalysts synthesized by one-pot reaction from organometallic precursors. Int J Hydrog Energy 46(41):21419–21432

    Article  CAS  Google Scholar 

  23. Liu J, Zhou H, Wang Q, Zeng F, Kuang Y (2012) Reduced graphene oxide supported palladium–silver bimetallic nanoparticles for ethanol electro-oxidation in alkaline media. J Mater Sci 47:2188–2194

    Article  ADS  CAS  Google Scholar 

  24. Guo F, Ye K, Cheng K, Wang G, Cao D (2015) Preparation of nickel nanowire arrays electrode for urea electrooxidation in alkaline medium. J Power Sources 278:562–568

    Article  CAS  Google Scholar 

  25. Yan W, Wang D, Diaz LA, Botte GG (2014) Nickel nanowires as effective catalysts for urea electro-oxidation. Electrochim Acta 134:266–271

    Article  CAS  Google Scholar 

  26. Yan W, Wang D, Botte GG (2012) Nickel and cobalt bimetallic hydroxide catalysts for urea electro-oxidation. Electrochim Acta 61:25–30

    Article  CAS  Google Scholar 

  27. Yan W, Wang D, Botte GG (2015) Template-assisted synthesis of Ni–Co bimetallic nanowires for urea electrocatalytic oxidation. J Appl Electrochem 45:1217–1222

    Article  CAS  Google Scholar 

  28. Abdolhosseinzadeh S, Asgharzadeh H, Seop Kim H (2015) Fast and fully-scalable synthesis of reduced graphene oxide. Sci Rep 5(1):1–7

    Article  Google Scholar 

  29. Glass DE, Galvan V, Prakash GS (2017) The effect of annealing temperature on nickel on reduced graphene oxide catalysts on urea electrooxidation. Electrochim Acta 253:489–497

    Article  CAS  Google Scholar 

  30. Lan R, Tao S (2011) Preparation of nano-sized nickel as anode catalyst for direct urea and urine fuel cells. J Power Sources 196(11):5021–5026

    Article  CAS  Google Scholar 

  31. Sayed ET, Abdelkareem MA, Alawadhi H, Olabi A (2021) Enhancing the performance of direct urea fuel cells using co dendrites. Appl Surf Sci 555:149698

    Article  CAS  Google Scholar 

  32. Xu W, Zhang H, Li G, Wu Z (2014) Nickel-cobalt bimetallic anode catalysts for direct urea fuel cell. Sci Rep 4(1):5863

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Basumatary P, Konwar D, Yoon YS (2018) A novel nicu/zno@ mwcnt anode employed in urea fuel cell to attain superior performances. Electrochim Acta 261:78–85

    Article  CAS  Google Scholar 

  34. Voelker M, Pashmineh S, Hauer J, Ortmanns M (2014) Current feedback linearization applied to oscillator based ADCs. IEEE Trans Circuits Syst I Regul Pap 61(11):3066–3074

    Article  Google Scholar 

  35. Tuna M (2020) A novel secure chaos-based pseudo random number generator based on ANN-based chaotic and ring oscillator: design and its FPGA implementation. Analog Integr Circ Sig Process 105(2):167–181

    Article  Google Scholar 

  36. Jalil J, Reaz MBI, Ali MAM (2013) CMOS differential ring oscillators: Review of the performance of CMOS ROs in communication systems. IEEE Microwave Mag 14(5):97–109

    Article  Google Scholar 

  37. J. Crossley, E. Naviasky, E. Alon, An energy-efficient ring-oscillator digital PLL, in: IEEE Custom Integrated Circuits Conference 2010, IEEE, 2010, pp. 1–4

  38. Burd TD, Pering TA, Stratakos AJ, Brodersen RW (2000) A dynamic voltage scaled microprocessor system. IEEE J Solid-State Circuits 35(11):1571–1580

    Article  ADS  Google Scholar 

  39. Biggs J, Myers J, Kufel J, Ozer E, Craske S, Sou A, Ramsdale C, Williamson K, Price R, White S (2021) A natively flexible 32-bit Arm microprocessor. Nature 595(7868):532–536

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Saini A, Kumar A, Anand VK, Sood SC (2016) Synthesis of graphene oxide using modified hummer’s method and its reduction using hydrazine hydrate. Int J Eng Trends Technol 40(2):67–71

    Article  Google Scholar 

  41. Bai S, Shen X, Zhu G, Li M, ** H, Chen K (2012) In situ growth of ni x co100–x nanoparticles on reduced graphene oxide nanosheets and their magnetic and catalytic properties. ACS Appl Mater Interfaces 4(5):2378–2386

    Article  CAS  PubMed  Google Scholar 

  42. Shrivastava S, Bahubalindruni PG, Goes J (2022) A Pulse width modulator using a high-speed comparator with flexible oxide TFT technology. IEEE Solid-State Circuits Lett 5:288–291

    Article  Google Scholar 

  43. Gupta B, Kumar N, Panda K, Kanan V, Joshi S, Visoly-Fisher I (2017) Role of oxygen functional groups in reduced graphene oxide for lubrication. Sci Rep 7(1):1–14

    Article  Google Scholar 

  44. He Q, Kang X, Fu F, Ren M, Liao F (2020) The synthesis of rGO/Ni/Co composite and electrochemical determination of dopamine. J Inorg Organomet Polym Mater 30:4269–4277

    Article  CAS  Google Scholar 

  45. Tesfaye RM, Das G, Park BJ, Kim J, Yoon HH (2019) Ni-Co bimetal decorated carbon nanotube aerogel as an efficient anode catalyst in urea fuel cells. Sci Rep 9(1):479

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  46. Vidotti M, Silva MRD, Salvador RP, De Torresi SC, Dall’Antonia LH (2008) Electrocatalytic oxidation of urea by nanostructured nickel/cobalt hydroxide electrodes. Electrochim Acta 53(11):4030–4034

    Article  CAS  Google Scholar 

  47. Eisa T, Park S-G, Mohamed HO, Abdelkareem MA, Lee J, Yang E, Castano P, Chae K-J (2021) Outstanding˜ performance of direct urea/hydrogen peroxide fuel cell based on precious metal-free catalyst electrodes. Energy 228:120584

    Article  CAS  Google Scholar 

  48. Serban E, Balan A, Iordache A, Cucu A, Ceaus C, Necula M, Ruxanda G, Bacu C, Mamut E, Stamatin I (2014) Urea/hydrogen peroxide fuel cell. Dig J Nanomater Bios 9:1647

    Google Scholar 

  49. Feiner A-S, McEvoy A (1994) The nernst equation. J Chem Educ 71(6):493

    Article  CAS  Google Scholar 

  50. Ganesan R, Krumm J, Ludwig K, Glesner M (2014) Investigation of voltage-controlled oscillator circuits using organic thin-film transistors (otft) for use in vco-based analog-to-digital converters. Solid-State Electron 93:8–14

    Article  ADS  CAS  Google Scholar 

  51. T. Meister, K. Ishida, S. Knobelspies, G. Cantarella, N. Munzenrieder, G. Tr¨ oster, C. Carta, F. Ellinger, 5–31-¨ hz 188- microw light-sensing oscillator with two active inductors fully integrated on plastic, IEEE Journal of Solid-State Circuits 54 (8) (2019) 2195–2206

  52. Keragodu T, Tiwari B, Bahubalindruni P, Goes J, Barquinha P et al (2018) A voltage controlled oscillator using igzo thin-film transistors, in: 2018 IEEE International Symposium on Circuits and Systems (ISCAS). Piscataway, IEEE, pp 1–5

    Google Scholar 

  53. Xu Y, Zhong W, Li B, Deng S, Fan H, Wu Z, Lu L, Yeung FSY, Kwok HS, Chen R (2020) An integrator and schmitt trigger based voltage-to-frequency converter using unipolar metal-oxide thin film transistors. IEEE J Electron Dev Soc 9:144–150

    Article  Google Scholar 

  54. D. Raiteri, P. van Lieshout, A. van Roermund, E. Cantatore, An organic vco-based adc for quasi-static signals achieving 1lsb inl at 6b resolution, in: 2013 IEEE International Solid-State Circuits Conference Digest ofTechnical Papers, IEEE, 2013, pp. 108–109

Download references

Acknowledgements

The authors would like to thank the funding received from IISER Bhopal and the funding agency MoE-STARS (File no:. MoE-STARS/STARS-2/2023-0327) to carry out the research and experimental work pertaining to this work.

Funding

Ministry of Education, India, MoE-STARS/STARS-2/2023-0327, MoE-STARS/STARS-2/2023-0327, MoE-STARS/STARS-2/2023-0327, MoE-STARS/STARS-2/2023-0327

Author information

Authors and Affiliations

Authors

Contributions

SK: Experimental, Technical Investigations, Writing, Data Collection and analysis. SL: Writing, data Interpretation, data analysis, technical Investigation. SS: Experimental, Technical Investigations, Writing, data Interpretation, PG: Writing, data analysis, technical Investigation.

Corresponding author

Correspondence to Sweta Lal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishna, S., Lal, S., Shrivastva, S. et al. Urea-based fuel cells on paper with micro-watt power generation to drive low power circuits. J Appl Electrochem (2024). https://doi.org/10.1007/s10800-024-02105-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10800-024-02105-z

Keywords

Navigation