Log in

Electrochemical detection of uric acid and xanthine in human urine using the Co/UiO-66 modified glassy carbon electrode

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

UiO-66 based materials (University of Oslo-66), with large surface area and abundant active sites, exhibit high water/solution stability due to a strong interaction between zirconium ion and the oxygen atom in carboxylate linkers. Therefore, they are potential electrode modifiers for electrochemical analysis because most of the electrochemical sensors have been used in aqueous media. In the present study, a potential electrochemical technique to detect uric acid (URA) and xanthine (XAN) is described using a Co/UiO-66 modified glassy carbon electrode. The Co/UiO-66 materials with different Co/Zr molar ratios were synthesized by hydrothermal process and were characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and nitrogen adsorption/desorption isotherms. The characterization showed a low loading and high dispersion of doped Co onto UiO-66 matrix. It was also found that the doped Co element may be grafted into the lattice of UiO-66. Co/UiO-66 exhibited better electrochemical activity toward URA and XAN detection. Under optimum conditions, 0.08Co/UiO-66/GCE demonstrated the best response compared to other material of different Co/Zr ratio, with three linear calibration ranges of 5–10 µM, 10-49.5 µM, and 49.5–327.1 µM and the limit of detection of 0.544 and 0.547 µM for URA and XAN, respectively. This proposed sensor offers a simple and low-cost pathway to quantify URA and XAN and was successfully employed to simultaneously determine URA and XAN in human urine with exceptional recoveries (97.61 to 104.79%).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yamamoto T, Moriwaki Y, Takahashi S (2005) Effect of ethanol on metabolism of purine bases (hypoxanthine, xanthine, and uric acid). Clin Chim Acta 356:35–57. https://doi.org/10.1016/j.cccn.2005.01.024

    Article  CAS  PubMed  Google Scholar 

  2. Jesny S, Girish Kumar K (2017) Non-enzymatic electrochemical sensor for the simultaneous determination of xanthine, its methyl derivatives theophylline and caffeine as well as its metabolite uric acid. Electroanalysis 29:1828–1837. https://doi.org/10.1002/elan.201700115

    Article  CAS  Google Scholar 

  3. Krakoff IH (1965) Studies of uric acid biosynthesis in the chronic leukemias. Arthritis Rheum 8:772–779. https://doi.org/10.1002/art.1780080440

    Article  CAS  PubMed  Google Scholar 

  4. Vernerová A, Krčmová LK, Heneberk O et al (2021) Chromatographic method for the determination of inflammatory biomarkers and uric acid in human saliva. Talanta 233:122598. https://doi.org/10.1016/j.talanta.2021.122598

    Article  CAS  PubMed  Google Scholar 

  5. Tan H, Li Y (2021) AIEgens-based fluorescent covalent organic framework in construction of chemiluminescence resonance energy transfer system for serum uric acid detection. Microchim Acta 188:254. https://doi.org/10.1007/s00604-021-04923-w

    Article  CAS  Google Scholar 

  6. Mu G, Luan F, Xu L et al (2012) Determination of purines in soybean milk by capillary electrophoresis in comparison with high performance liquid chromatography. Anal Methods 4:3386–3391. https://doi.org/10.1039/C2AY25488C

    Article  CAS  Google Scholar 

  7. Guo Z, Wang G, Li J, Wu D, Guo X (2021) A miniaturized electrochemical biosensor based on poly(l- threonine) modified pencil graphite electrodes and its application for trace-level determination of uric acid, xanthine and hypoxanthine. Int J Electrochem Sci 16:210262. https://doi.org/10.20964/2021.01.05

    Article  CAS  Google Scholar 

  8. Ndlovu T, Arotiba OA, Sampath S et al (2012) An exfoliated graphite-based bisphenol a electrochemical sensor. Sensors 12:11601–11611. https://doi.org/10.3390/s120911601

    Article  ADS  CAS  PubMed Central  Google Scholar 

  9. Ghanbari MH, Mashhadizadeh MH, Norouzi Z, Salehzadeh H (2022) Simultaneous electrochemical detection of uric acid and xanthine based on electrodeposited B, N co-doped reduced graphene oxide, gold nanoparticles and electropolymerized poly (L-cysteine) gradually modified electrode platform. Microchem J 175:107213. https://doi.org/10.1016/j.microc.2022.107213

    Article  CAS  Google Scholar 

  10. Ganesan M, Ramadhass KD, Chuang H-C, Gopalakrishnan G (2021) Synthesis of nitrogen-doped carbon quantum dots@Fe2O3/multiwall carbon nanotubes ternary nanocomposite for the simultaneous electrochemical detection of 5-fluorouracil, uric acid, and xanthine. J Mol Liq 331:115768. https://doi.org/10.1016/j.molliq.2021.115768

    Article  CAS  Google Scholar 

  11. Tang T, Zhou M, Lv J et al (2022) Sensitive and selective electrochemical determination of uric acid in urine based on ultrasmall iron oxide nanoparticles decorated urchin-like nitrogen-doped carbon. Colloids Surf B Biointerfaces 216:112538. https://doi.org/10.1016/j.colsurfb.2022.112538

    Article  CAS  PubMed  Google Scholar 

  12. Zhu D, **n J, Li X (2022) Self-assembly encapsulation of vanadium tetrasulfide into nitrogen doped biomass-derived porous carbon as a high performance electrochemical sensor for xanthine determination. New J Chem 46:12773–12782. https://doi.org/10.1039/D2NJ02113G

    Article  CAS  Google Scholar 

  13. Amini A, Kazemi S, Safarifard V (2020) Metal-organic framework-based nanocomposites for sensing applications-a review. Polyhedron 177:114260. https://doi.org/10.1016/j.poly.2019.114260

    Article  CAS  Google Scholar 

  14. Wei N, Zhang M-Y, Zhang X-N et al (2014) Two series of solvent-dependent lanthanide coordination polymers demonstrating tunable luminescence and catalysis properties. Cryst Growth Des 14:3002–3009. https://doi.org/10.1021/cg500286v

    Article  CAS  Google Scholar 

  15. Cavka JH, Jakobsen S, Olsbye U et al (2008) A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc 130:13850–13851. https://doi.org/10.1021/ja8057953

    Article  CAS  PubMed  Google Scholar 

  16. Kar AK, Sarkar R, Manal AK et al (2023) Unveiling and understanding the remarkable enhancement in the catalytic activity by the defect creation in UIO-66 during the catalytic transfer hydrodeoxygenation of vanillin with isopropanol. Appl Catal B Environ 325:122385. https://doi.org/10.1016/j.apcatb.2023.122385

    Article  CAS  Google Scholar 

  17. Mirzaei K, Jafarpour E, Shojaei A et al (2023) An investigation on the influence of highly acidic media on the microstructural stability and dye adsorption performance of UiO-66. Appl Surf Sci 618:156531. https://doi.org/10.1016/j.apsusc.2023.156531

    Article  CAS  Google Scholar 

  18. Pourmadadi M, Omrani Z, Forootan Z et al (2023) UiO-66 nanoparticles as a drug delivery system: a comprehensive review. J Drug Deliv Sci Technol 86:104690. https://doi.org/10.1016/j.jddst.2023.104690

    Article  CAS  Google Scholar 

  19. Wang Y, Lu Y, Hu Z et al (2023) Facile preparation of Zr@carbon electrodes based on polyimide/UiO-66 composites for supercapacitors. Electrochem Commun 148:107449. https://doi.org/10.1016/j.elecom.2023.107449

    Article  CAS  Google Scholar 

  20. Zhang H, **ong P, Li G et al (2020) Applications of multifunctional zirconium-based metal-organic frameworks in analytical chemistry: overview and perspectives. TrAC Trends Anal Chem 131:116015. https://doi.org/10.1016/j.trac.2020.116015

    Article  CAS  Google Scholar 

  21. Chang T-E, Chuang C-H, Kung C-W (2021) An iridium-decorated metal–organic framework for electrocatalytic oxidation of Nitrite. Electrochem Commun 122:106899. https://doi.org/10.1016/j.elecom.2020.106899

    Article  CAS  Google Scholar 

  22. Chuang C-H, Kung C-W (2020) Metal – organic frameworks toward electrochemical sensors: challenges and opportunities. Electroanalysis 32:1885–1895. https://doi.org/10.1002/elan.202060111

    Article  CAS  Google Scholar 

  23. Ding Y, Wei F, Dong C et al (2021) UiO-66 based electrochemical sensor for simultaneous detection of cd(II) and pb(II). Inorg Chem Commun 131:108785. https://doi.org/10.1016/j.inoche.2021.108785

    Article  CAS  Google Scholar 

  24. Li Y, Shen Y, Zhang Y et al (2021) A UiO-66-NH2/carbon nanotube nanocomposite for simultaneous sensing of dopamine and acetaminophen. Anal Chim Acta 1158:338419. https://doi.org/10.1016/j.aca.2021.338419

    Article  CAS  PubMed  Google Scholar 

  25. Britton HTS, Robinson RA (1931) CXCVIII—universal buffer solutions and the dissociation constant of veronal. J Chem Soc. https://doi.org/10.1039/JR9310001456

    Article  Google Scholar 

  26. Ahmed M, Al-Hadeethi YM, Alshahrie A et al (2022) The role of cobalt to control the synthesis of nanoscale Co/UiO-66 composite for photocatalysis. J Am Ceram Soc 105:7043–7052. https://doi.org/10.1111/jace.18672

    Article  CAS  Google Scholar 

  27. Nhi LTT, Tu NTT, Hoa LT et al (2021) Simultaneous voltammetric determination of ascorbic acid and acetaminophen in pharmaceutical formulations with UiO-66-modified glassy carbon electrode. J Nanoparticle Res 23:218. https://doi.org/10.1007/s11051-021-05327-w

    Article  ADS  CAS  Google Scholar 

  28. Shearer GC, Chavan S, Bordiga S et al (2016) Defect engineering: yuning the porosity and composition of the metal–organic framework UiO-66 via modulated synthesis. Chem Mater 28:3749–3761. https://doi.org/10.1021/acs.chemmater.6b00602

    Article  CAS  Google Scholar 

  29. Wang Y-S, Liao J-L, Li Y-S et al (2020) Zirconium-based metal–organic framework nanocomposites containing dimensionally distinct nanocarbons for pseudocapacitors. ACS Appl Nano Mater 3:1448–1456. https://doi.org/10.1021/acsanm.9b02297

    Article  CAS  Google Scholar 

  30. Wang Y-S, Chen Y-C, Li J-H, Kung C-W (2019) Toward metal–organic-framework-based supercapacitors: room-temperature synthesis of electrically conducting mof-based nanocomposites decorated with redox-active manganese. Eur J Inorg Chem 2019:3036–3044. https://doi.org/10.1002/ejic.201900584

    Article  CAS  Google Scholar 

  31. Hu J, Liu Y, Liu J et al (2018) High CO2 adsorption capacities in UiO type MOFs comprising heterocyclic ligand. Microporous Mesoporous Mater 256:25–31. https://doi.org/10.1016/j.micromeso.2017.07.051

    Article  CAS  Google Scholar 

  32. Li J, Wang S, **ao T et al (2017) Controllable preparation of nanoporous Ni3S2 films by sulfuration of nickel foam as promising asymmetric supercapacitor electrodes. Appl Surf Sci 420:919–926. https://doi.org/10.1016/j.apsusc.2017.05.206

    Article  ADS  CAS  Google Scholar 

  33. Shaaban ER (2013) Optical constants and fitted transmittance spectra of varies thickness of polycrystalline ZnSe thin films in terms of spectroscopic ellipsometry. J Alloys Compd 563:274–279. https://doi.org/10.1016/j.jallcom.2013.02.132

    Article  CAS  Google Scholar 

  34. Zheng J, Lei Z (2018) Incorporation of CoO nanoparticles in 3D marigold flower-like hierarchical architecture MnCo2O4 for highly boosting solar light photo-oxidation and reduction ability. Appl Catal B Environ 237:1–8. https://doi.org/10.1016/j.apcatb.2018.05.060

    Article  CAS  Google Scholar 

  35. Deng P, Xu Z, Zeng R, Ding C (2015) Electrochemical behavior and voltammetric determination of vanillin based on an acetylene black paste electrode modified with graphene–polyvinylpyrrolidone composite film. Food Chem 180:156–163. https://doi.org/10.1016/j.foodchem.2015.02.035

    Article  CAS  PubMed  Google Scholar 

  36. Bard AJ, Faulkner LR (2001) Fundamentals and applications: electrochemical methods, 2nd edn. Wiley, Hoboken

    Google Scholar 

  37. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19–28. https://doi.org/10.1016/S0022-0728(79)80075-3

    Article  CAS  Google Scholar 

  38. Dryhurst G (1972) Electrochemical oxidation of uric acid and xanthine at the pyrolytic graphite electrode: mechanistic interpretation of electrochemistry. J Electrochem Soc 119:1659. https://doi.org/10.1149/1.2404066

    Article  CAS  Google Scholar 

  39. Kumar AS, Swetha P (2010) Ru(DMSO)4Cl2 nano-aggregated nafion membrane modified electrode for simultaneous electrochemical detection of hypoxanthine, xanthine and uric acid. J Electroanal Chem 642:135–142. https://doi.org/10.1016/j.jelechem.2010.02.031

    Article  CAS  Google Scholar 

  40. Kalimuthu P, John SA (2010) Simultaneous determination of ascorbic acid, dopamine, uric acid and xanthine using a nanostructured polymer film modified electrode. Talanta 80:1686–1691. https://doi.org/10.1016/j.talanta.2009.10.007

    Article  CAS  PubMed  Google Scholar 

  41. Sun D, Zhang Y, Wang F et al (2009) Electrochemical sensor for simultaneous detection of ascorbic acid, uric acid and xanthine based on the surface enhancement effect of mesoporous silica. Sens Actuators B Chem 141:641–645. https://doi.org/10.1016/j.snb.2009.07.043

    Article  CAS  Google Scholar 

  42. Ibrahim H, Temerk Y (2016) Sensitive electrochemical sensor for simultaneous determination of uric acid and xanthine in human biological fluids based on the nano-boron doped ceria modified glassy carbon paste electrode. J Electroanal Chem 780:176–186. https://doi.org/10.1016/j.jelechem.2016.09.016

    Article  CAS  Google Scholar 

  43. Sen S, Sarkar P (2020) A simple electrochemical approach to fabricate functionalized MWCNT-nanogold decorated PEDOT nanohybrid for simultaneous quantification of uric acid, xanthine and hypoxanthine. Anal Chim Acta 1114:15–28. https://doi.org/10.1016/j.aca.2020.03.060

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study is funded by the Ministry of Education and Training - Vietnam (No B2022- DNA-16).

Author information

Authors and Affiliations

Authors

Contributions

VTN: conceptualization, validation. NQM: methodology, investigation. PTHT: data curation. DQK and TDM: writing—review & editing. TDM : supervision. formal analysis. VTN: resources.

Corresponding authors

Correspondence to Tran Duc Manh or Dinh Quang Khieu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 287.1 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, V.T., Manh, T.D., Man, N.Q. et al. Electrochemical detection of uric acid and xanthine in human urine using the Co/UiO-66 modified glassy carbon electrode. J Appl Electrochem (2024). https://doi.org/10.1007/s10800-024-02102-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10800-024-02102-2

Keywords

Navigation