Log in

Effect of anode passivation on ferrate(VI) electro-generation using ductile iron anode and application for methylene blue treatment

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

A Correction to this article was published on 03 May 2024

This article has been updated

Abstract

Passivation of anode is a significant challenge in the electrochemical synthesis process of Fe(VI), affecting ferrate(VI) generation efficiency. In this study, the electrochemical, morphological, and structural characteristics of the passive layer after different electrolysis times were investigated to evaluate its impact on ferrate synthesis. The results determined the optimal duration of the electrosynthesis cycle for the ductile iron anode was 6 h. The ductile iron anode has high carbon content with the graphite form of spheres, and during the electrolysis time smaller than 6 h the thin passive layer forms in the outer region of the graphite nodule and the passive layer does not cover the surface of the porous graphite nodules. Therefore, the solution easily diffuses through and improves the contact between the electrolyte and the inner iron layer, enhancing the effectiveness of the ferrate synthesis. With the electrolysis time greater than 6 h, the thicker passive layer consisting of a mixture of iron oxides Fe2O3 and Fe3O4 prevents considerable ferrate generation. As a consequence, Fe(VI) concentration of 2035 mg L−1 and current efficiency of 59% can be obtained after 6 h electrolysis. The prepared ferrate(VI) solution was used to treat methylene blue (MB) in water, and the optimal condition to remove MB by ferrate(VI) was determined. The removal of MB can achieved 99% after 50 min, at pH = 3, and the molar ratios of Fe(VI) to MB of 10: 1.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Change history

References

  1. Naghizadeh A, Nabizadeh R (2016) Removal of reactive blue 29 dye by adsorption on modified chitosan in the presence of hydrogen peroxide. Environ Prot Eng 42:149–168. https://doi.org/10.5277/epe160112

    Article  Google Scholar 

  2. Mulushewa Z, Dinbore WT, Ayele Y (2021) Removal of methylene blue from textile wastewater using kaolin and zeolite-x synthesized from Ethiopian kaolin. Environ Anal Health Toxicol 36(1):e2021007. https://doi.org/10.5620/eaht.2021007

    Article  PubMed  PubMed Central  Google Scholar 

  3. Peyghami A, Moharrami A, Rashtbari Y, Afshin S, Vosuoghi M, Dargahi A (2021) Evaluation of the efficiency of magnetized clinoptilolite zeolite with Fe3O4 nanoparticles on the removal of basic violet 16 (BV16) dye from aqueous solutions. J Dispers Sci Technol. https://doi.org/10.1080/01932691.2021.1947847

    Article  Google Scholar 

  4. Alver E, Metin A, Brouers F (2020) Methylene blue adsorption on magnetic alginate/rice husk bio-composite. Int J Biol Macromo 154:104–113. https://doi.org/10.1016/j.ijbiomac.2020.02.330

    Article  CAS  Google Scholar 

  5. Fito J, Abewaa M, Mengistu A, Angassa K, Ambaye AD, Moyo W, Nkambule T (2023) Adsorption of methylene blue from textile industrial wastewater using activated carbon developed from Rumex Abyssinicus plant. Sci Rep 13:5427. https://doi.org/10.1038/s41598-023-32341-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rafatullah M, Sulaiman O, Hashim, Ahmad A (2010) Adsorption of methylene blue on low-cost adsorbents: a review. J Hazard Mater 177:70–80. https://doi.org/10.1016/j.jhazmat.2009.12.047

    Article  CAS  PubMed  Google Scholar 

  7. Asgari G, Shabanloo A, Salari M, Eslami F (2020) Sonophoto-catalytic treatment of AB113 dye and real textile wastewater using ZnO/persulfate: modeling by response surface methodology and artificial neural network. Environ Res 184:109367. https://doi.org/10.1016/j.envres.2020.109367

    Article  CAS  PubMed  Google Scholar 

  8. Yao X, Ji L, Guo J, Ge S, Lu W, Cai L, Wang Y, Song W, Zhang H (2020) Magnetic activated biochar nanocomposites derived from wakame and its application in methylene blue adsorption. Bioresour Technol 302:122842. https://doi.org/10.1016/j.biortech.2020.122842

    Article  CAS  PubMed  Google Scholar 

  9. Jua LY, Karri RR, Mubarak NM, Yon LS, Bing CH, Khalid M, Jagadish P, Abdullah EC (2020) Modeling of methylene blue adsorption using functionalized Buckypaper/Polyvinyl alcohol membrane via ant colony optimization. Environ Pollut 259:113940. https://doi.org/10.1016/j.envpol.2020.113940

    Article  CAS  Google Scholar 

  10. Paz A, Carballo J, Pérez MJ, Domínguez JM (2017) Biological treatment of model dyes and textile wastewaters. Chemosphere 181:168–177. https://doi.org/10.1016/j.chemosphere.2017.04.046

    Article  CAS  PubMed  Google Scholar 

  11. Samarghandi MR, Dargahi A, Shabanloo A, Nasab HZ, Vaziri Y, Ansari A (2020) Electrochemical degradation of methylene blue dye using a graphite doped PbO2 anode: optimization of operational parameters, degradation pathway and improving the biodegradability of textile wastewater. Arab J Chem 13(8):6847–6864. https://doi.org/10.1016/j.arabjc.2020.06.038

    Article  CAS  Google Scholar 

  12. Turhan K, Turgut Z (2009) Decolorization of direct dye in textile wastewater by ozonization in a semi-batch bubble column reactor. Desalination 242:256–263. https://doi.org/10.1016/j.desal.2008.05.005

    Article  CAS  Google Scholar 

  13. Forgacs E, Cserhati T, Oros G (2004) Removal of synthetic dyes from wastewaters: a review. Environ Int 30:953–971. https://doi.org/10.1016/j.envint.2004.02.001

    Article  CAS  PubMed  Google Scholar 

  14. Bull RJ, Reckhow DA, Li X, Humpage A, Joll C, Hrudey SE (2011) Potential carcino-genic hazards of non-regulated disinfection by-products: Haloquinones, halo-cyclopentene and cyclohexene derivatives, N-halamines, halonitriles, and heterocyclic amines. Toxicology 286(1–3):1–19. https://doi.org/10.1016/j.tox.2011.05.004

    Article  CAS  PubMed  Google Scholar 

  15. Yang L, Hai C, Zhang H, Feng C, Luo M, Zhou P, Len J, Tian X, Zhao C, Lai B (2023) Insights into the role of oxidation and adsorption for degradation of methyl parathion by ferrate (VI). J Environ Chem Eng 11(3):110171. https://doi.org/10.1016/j.jece.2023.110171

    Article  CAS  Google Scholar 

  16. Rougé V, Shin J, Nguyen PTTH, Jang D, Lee W, Escher BI, Lee Y (2022) Nitriles as main products from the oxidation of primary amines by ferrate(VI): kinetics, mechanisms and toxicological implications for nitrogenous disinfection byproduct control. Water Res 209:117881. https://doi.org/10.1016/j.watres.2021.117881

    Article  CAS  PubMed  Google Scholar 

  17. Talaiekhozania A, Talaei MR, Rezania S (2017) An overview on production and application of ferrate (VI) for chemical oxidation, coagulation and disinfection of water and wastewater. J Environ Chem Eng 5:1828–1842. https://doi.org/10.1016/j.jece.2017.03.025

    Article  CAS  Google Scholar 

  18. Xu H, Luo Y, Wang P, Zhu J, Yang Z, Liu Z (2019) Removal of thallium in water/wastewater: a review. Water Res 165:114981. https://doi.org/10.1016/j.watres.2019.114981

    Article  CAS  PubMed  Google Scholar 

  19. Zhou Z, Jiang J-Q (2015) Treatment of selected pharmaceuticals by ferrate(VI): performance, kinetic studies and identification of oxidation products. J Pharm Biomed Anal 106:37–45. https://doi.org/10.1016/j.jpba.2014.06.032

    Article  CAS  PubMed  Google Scholar 

  20. Mácová Z, Bouzek K, Híves J, Sharma VK, Terryn RJ, Baum JC (2009) Research progress in the electrochemical synthesis of ferrate(VI). Electrochim Acta 54:2673–2683. https://doi.org/10.1016/j.electacta.2008.11.034

    Article  CAS  Google Scholar 

  21. Gunawan G, Prasetya NBA, Haris A, Febriliani F (2021)  Synthesis of ferrate using NaOCl and Fe(OH)3 from electrolysis of used iron, and its application for metanil yellow degradation. J Phys. https://doi.org/10.1088/1742-6596/1943/1/012181

    Article  Google Scholar 

  22. Jiang J, Wang S, Panagoulopoulos A (2006) The exploration of potassium ferrate (VI) as a disinfectant/coagulant in water and wastewater treatment. Chemosphere 3(2):212–219. https://doi.org/10.1016/j.chemosphere.2005.08.020

    Article  CAS  Google Scholar 

  23. Alsheyab M, Jiang JQ, Stanford C (2009) On-line production of ferrate with an electrochemical method and its potential application for wastewater treatment – A review. J Environ Manage 90(3):1350–1356. https://doi.org/10.1016/j.jenvman.2008.10.001

    Article  CAS  PubMed  Google Scholar 

  24. Licht S, Yu X (2005) Electrochemical Alkaline Fe(VI) Water Purification and Remediation. Environ Sci Techno 39 20:8071–8076. https://doi.org/10.1021/es051084k

    Article  CAS  Google Scholar 

  25. Yang E, Shi J, Liang H (2012) On-line electrochemical production of ferrate (VI) for odor control. Electrochim Acta 63:369–374. https://doi.org/10.1016/j.electacta.2011.12.126

    Article  CAS  Google Scholar 

  26. Nikolić-Bujanović L, Čekerevac M, Vo**ović-Miloradov M, Jokić A, Simičić M (2012) A comparative study of iron-containing anodes and their influence on elec-trochemical synthesis of ferrate(VI). J Ind Eng Chem 18:1931–1936. https://doi.org/10.1016/j.jiec.2012.05.007

    Article  CAS  Google Scholar 

  27. Alsheyab M, Jiang J, Stanford C (2010) Electrochemical generation of ferrate (VI): determination of optimum conditions. Desalination 254(1–3):175–178. https://doi.org/10.1016/j.desal.2009.11.035

    Article  CAS  Google Scholar 

  28. Diaz M, Doederer K, Keller J, Cataldo M, Donose B-C, Ali Y, Ledezma P (2021) Towards in situ electro-generation of ferrate for drinking water treatment:a comparison of three low-cost sacrificial iron electrodes. J Electroanal Chem 880:114897. https://doi.org/10.1016/j.jelechem.2020.114897

    Article  CAS  Google Scholar 

  29. Wang KM, Shu J, Wang SJ, Hong TY, Xu XP, Wang HY (2020) Efficient electrochemical generation of ferrate(VI) by iron coil anode imposed with square alternating current and treatment of antibiotics. J Hazard Mater 384(15):121458. https://doi.org/10.1016/j.jhazmat.2019.121458

    Article  CAS  PubMed  Google Scholar 

  30. Bouzek K, Flower L, Rousar I, Wragg AA (1999) Electrochemical production of ferrate(VI) using sinusoidal alternating current superimposed on direct current. Pure iron electrode. J Appl Electrochem 29:569–576. https://doi.org/10.1023/A:1026491704787

    Article  CAS  Google Scholar 

  31. Sun X, Zu K, Liang H, Sun L, Zhang L, Wang C, Sharma VK (2018) Electrochemical synthesis of ferrate(VI) using sponge iron anode and oxidative transformations of antibiotic and pesticide. J Hazard Mater 344:1155–1164. https://doi.org/10.1016/j.jhazmat.2017.08.081

    Article  CAS  PubMed  Google Scholar 

  32. Mai TTT, Nguyen TVA, Phan TB, Le TG (2023) Ductile iron: a low-cost optimal anode materials for electrochemical generation of ferrate(VI). J Electrochem Soc 170:083510. https://doi.org/10.1149/1945-7111/acef5b

    Article  Google Scholar 

  33. ˇCekerevac M, Simicˇic´ M, Bujanovic´ LN, Popovic´ N (2012) The influence of silicate and sulphate anions on the anodic corrosion and the transpassivity of iron and silicon-rich steel in concentrated KOH solution. Corros Sci 64:204–212. https://doi.org/10.1016/j.corsci.2012.07.019

    Article  CAS  Google Scholar 

  34. Bokobza L, Bruneel J, Couzi M (2015) Raman Spectra of Carbon-based materials (from graphite to Carbon black) and of some silicone composites. C J Carbon Res 1(1):77–94. https://doi.org/10.3390/c1010077

    Article  Google Scholar 

  35. Singh GP, Moon AP, Sengupta S, Deo G, Sangal S, Mondal K (2015) Corrosion behavior of IF steel in various media and its comparison with mild steel. J Mater Eng Perform 24:1961–1974. https://doi.org/10.1007/s11665-015-1448-7

    Article  CAS  Google Scholar 

  36. Yang Z, Xu H, Zeng G, Luo Y, Yang X, Huang J, Wang L, Song P (2015) The behavior of dissolution/passivation and the transformation of passive films during electrocoagulation: influences of initial pH, cr(VI) concentration, and alternating pulsed current. Electrochim Acta 153:149–158. https://doi.org/10.1016/j.electacta.2014.11.183

    Article  CAS  Google Scholar 

  37. Gunawan G, Prasetya NBA, Haris A, Pratista E (2022) Ferrate synthesis using NaOCl and its application for dye removal. Open Chem 20:1142–1154. https://doi.org/10.1515/chem-2022-0223

    Article  CAS  Google Scholar 

  38. Wu L, **e Q, Lv Y, Wu Z, Liang X, Lu M, Nie Y (2019) Degradation of methylene blue via dielectric barrier discharge plasma treatment. Water 11:1818. https://doi.org/10.3390/w11091818

    Article  CAS  Google Scholar 

  39. de Brito Benetoli LO, Cadorin BM, Baldissarelli VZ, Geremias R, de Souza IG, Debacher NA (2012) Pyrite-enhanced methylene blue degradation in non-thermal plasma water treatment reactor. J Hazard Mater 237–238:55–62. https://doi.org/10.1016/j.jhazmat.2012.07.067

    Article  CAS  Google Scholar 

  40. Zhang J, Lee KH, Cui L, Jeong T (2009) Degradation of methylene blue in aqueous solution by ozone-based processes. J Ind Eng Chem 15(2):185–189. https://doi.org/10.1016/j.jiec.2008.09.014

    Article  CAS  Google Scholar 

  41. Atique Ullah AKM, Fazle Kibria AKM, Akter M, Khan MNI, Tareq ARM, Shakhawat HF (2017) Oxidative degradation of methylene blue using Mn3O4 nanoparticles. Water Conserv Sci Eng 1:249–256. https://doi.org/10.1007/s41101-017-0017-3

    Article  Google Scholar 

  42. Mohammed HA, Khaleefa SA, Basheer MI (2021) Photolysis of methylene blue dye using an advanced oxidation process (Ultraviolet Light and Hydrogen Peroxide). J Eng Sustain Dev 25:59–67. https://doi.org/10.31272/jeasd.25.1.5

    Article  Google Scholar 

  43. Attri P, Garg S, Ratan JK, Giri AS (2022) Comparative study using advanced oxidation processes for the degradation of model dyes mixture: reaction kinetics and biodegradability assay. Mater Today: Proc 57:1533–1538. https://doi.org/10.1016/j.matpr.2021.12.063

    Article  CAS  Google Scholar 

  44. Choquehuanca A, Ruiz-Montoya JG, Gómez A L R-T (2021) Discoloration of methylene blue at neutral pH by heterogeneous photo-Fenton-like reactions using crystalline and amorphous iron oxides. Open Chem 19:1009–1020. https://doi.org/10.1515/chem-2021-0077

    Article  CAS  Google Scholar 

  45. Ahmed Y, Yaakob Z, Akhtar P (2016) Degradation and mineralization of methylene blue using a heterogeneous photo-Fenton catalyst under visible and solar light irradiation. Catal Sci Technol 6:1222–1232. https://doi.org/10.1039/C5CY01494H

    Article  CAS  Google Scholar 

  46. Kalaycıoğlu Z, Uysal BÖ, Pekcan Ö, Erim FB (2023) Efficient photocatalytic degradation of methylene blue dye from aqueous solution with cerium oxide nanoparticles and graphene oxide-doped polyacrylamide. ACS Omega 8:13004–13015. https://doi.org/10.1021/acsomega.3c00198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research is financially supported by Vietnam Academy of Science and Technology under code number KHCBHH.01/22–24.

Author information

Authors and Affiliations

Authors

Contributions

MTTT: Writing—original draft, writing—review and editing, methodology, formal analysis, and project administration; NTVA: Prepared figures, formal analysis, visualization, and resources; PTB: Writing – review & editing, methodology, formal analysis.

Corresponding author

Correspondence to Thi Thanh Thuy Mai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Figure 7 was updated.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mai, T.T.T., Anh Nguyen, T.V. & Phan, T.B. Effect of anode passivation on ferrate(VI) electro-generation using ductile iron anode and application for methylene blue treatment. J Appl Electrochem 54, 1783–1794 (2024). https://doi.org/10.1007/s10800-024-02066-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-024-02066-3

Keywords

Navigation