Log in

Voltammetric and impedimetric analysis of adriamycin and fish sperm DNA interaction using pencil graphite electrodes

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical behavior of fish sperm double-strand deoxyribonucleic acid (dsDNA) in the presence of adriamycin (ADR) is based on the reduction of the guanine?s oxidation peak signal and examined using electrochemical techniques with pencil graphite electrodes (PGEs). A hallmark for identifying Adriamycin was the reduction in the peak height of the guanine oxidation signal, following the interaction of the drug with dsDNA. Differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV) were the characterizing methods used in the investigation. The parameters employed for the optimization experiments to ascertain the electrochemical behavior of Adriamycin were Scan rate and pH investigations. The results of the characterization and optimization investigations demonstrated that the ADR immobilized at various concentrations on the electrode surface interacted with the 100 µg/mL dsDNA. According to the EIS findings, as dsDNA and ADR concentration increase, charge transfer resistance (Rct) decreases. When the electrochemical behavior of ADR was examined using different pH values and scan rates, peak currents at pH 4.0 were observed to be the strongest, with the peak values changing to the negative with the peak current signal increasing. Limits of detection (LOD) and quantitation (LOQ) were determined to be 0.0014 µM and 0.004 µM, respectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. McGown LB, Joseph MJ, Pitner JB et al (1995) The nucleic acid ligand. A new tool for molecular recognition. Anal Chem 67:663A?8A. https://doi.org/10.1021/ac00117a002

    Article  CAS  PubMed  Google Scholar 

  2. Topkaya SN, Cetin AE (2019) Determination of electrochemical interaction between 2-(1H-benzimidazol-2-yl) phenol and DNA sequences. Electroanalysis 31:1571?1578. https://doi.org/10.1002/elan.201900199

    Article  CAS  Google Scholar 

  3. Chu X, Shen G, Jiang J, Yu R (1999) Intercalation of pharmorubicin anticancer drug to DNA studied by cyclic voltammetry with analytical applications. Anal Lett 32:717?727

    Article  Google Scholar 

  4. Topkaya SN, Karasakal A, Cetin AE et al (2020) Electrochemical characteristics of a novel pyridinium salt as a candidate drug molecule and its Interaction with DNA. Electroanalysis 32:1780?1787. https://doi.org/10.1002/elan.202000012

    Article  CAS  Google Scholar 

  5. Kurucsev T, Kubista M (1992) Linear dichroism spectroscopy of nucleic acids. Q Rev Biophys 25:51?170. https://doi.org/10.1017/S0033583500004728

    Article  PubMed  Google Scholar 

  6. Lown JW, Hanstock CC, Bradley BD, Scraba DG (1984) Interactions of the antitumor agents mitoxantrone and bisantrene with deoxyribonucleic acids studied by electron microscopy. Mol Pharmacol 25:178?184

    CAS  PubMed  Google Scholar 

  7. Fritzsche H, Akhebat A, Taillandier E et al (1993) Structure and drug interaction of parellel-stranded DNA studies by infrared spectroscope and fluorence. Nucleic Acids Res 21:5085?5091. https://doi.org/10.1093/nar/21.22.5085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nunn CM, Van Meervelt L, Zhang S et al (1991) DNA-drug interactions. The crystal structures of d(TGTACA) and d(TGATCA) complexed with daunomycin. J Mol Biol 222:167?177. https://doi.org/10.1016/0022-2836(91)90203-I

    Article  CAS  PubMed  Google Scholar 

  9. Erdem A, Meric B, Kerman K et al (1999) Detection of interaction between metal complex indicator and DNA by using electrochemical biosensor. Electroanal An Int J Devoted to Fundam Pract Asp Electroanal 11:1372?1376.

    CAS  Google Scholar 

  10. Purushothama HT, Nayaka YA, Vinay MM et al (2018) Pencil graphite electrode as an electrochemical sensor for the voltammetric determination of chlorpromazine. J Sci Adv Mater Devices 3:161?166. https://doi.org/10.1016/j.jsamd.2018.03.007

    Article  Google Scholar 

  11. Plambeck JA, William Lown J (1984) Electrochemical studies of antitumor antibiotics V. An electrochemical method of measurement of the binding of doxorubicin and daunorubicin derivatives to DNA. J Electrochem Soc 131:2556. https://doi.org/10.1149/1.2115358

    Article  CAS  Google Scholar 

  12. Fojta M, Doffková R, Paleček E (1996) Determination of traces of RNA in submicrogram amounts of single- or double-stranded DNAs by means of nucleic acid-modified electrodes. Electroanalysis 8:420?426. https://doi.org/10.1002/elan.1140080504

    Article  CAS  Google Scholar 

  13. Teijeiro C, Perez P, Marín D, Paleček E (1995) Cyclic voltammetry of mitomycin C and DNA. Bioelectrochem Bioenerg 38:77?83. https://doi.org/10.1016/0302-4598(95)01791-C

    Article  CAS  Google Scholar 

  14. Erdem A, Kerman K, Meric B et al (1999) DNA electrochemical biosensor for the detection of short DNA sequences related to the hepatitis B Virus.  Electroanal Int J devoted Fundam Pract Asp Electroanal 11:586?587.

    CAS  Google Scholar 

  15. Perry CM (1996) The Chemotherapy Source Book. William & Wilkins. Awaverly Company, USA p3-4, pp.19-20.

  16. Di AM, Gaetani M, Scarpinato B (1969) Adriamycin (NSC-123,127): a new antibiotic with antitumor activity. Cancer Chemother reports 53:33?37

    Google Scholar 

  17. Kiyomiya KI, Matsuo S, Kurebe M (2001) Differences in intracellular sites of action of adriamycin in neoplastic and normal differentiated cells. Cancer Chemother Pharmacol 47:51?56. https://doi.org/10.1007/s002800000201

    Article  CAS  PubMed  Google Scholar 

  18. Zhou S, Starkov A, Froberg MK et al (2001) Cumulative and irreversible cardiac mitochondrial dysfunction induced by doxorubicin. Cancer Res 61:771?777

    CAS  PubMed  Google Scholar 

  19. Minotti G (1999) Erratum: role of iron in anthracycline cardiotoxicity: new tunes for an old song? (FASEB Journal (199?212)). FASEB J 13:594. https://doi.org/10.1096/fasebj.13.3.594

    Article  CAS  Google Scholar 

  20. Kostoryz EL, Yourtee DM (2001) Oxidative mutagenesis of doxorubicin-Fe(III) complex. Mutat Res - Genet Toxicol Environ Mutagen 490:131?139. https://doi.org/10.1016/S1383-5718(00)00158-3

    Article  CAS  Google Scholar 

  21. David SS, Williams SD (1998) Chemistry of glycosylases and endonucleases involved in base-excision repair. Chem Rev 98:1221?1261. https://doi.org/10.1021/cr980321h

    Article  CAS  PubMed  Google Scholar 

  22. Pigram WJ, Fuller W and LDH (1972) Stereochemistry of intercalation: interaction of daunomycin with DNA. Nat New Biol 235:17?19

    Article  CAS  PubMed  Google Scholar 

  23. Berg H, Horn G, Luthardt U, Ihn W (1981) Interaction of anthracycline antibiotics with biopolymers: part V. Polarographic behavior and complexes with DNA. Bioelectrochem Bioenerg 8:537?553. https://doi.org/10.1016/S0022-0728(81)80246-X

    Article  CAS  Google Scholar 

  24. Frederick CA, Williams LD, Ughetto G et al (1990) Structural comparison of anticancer drug-DNA complexes: adriamycin and daunomycin. Biochemistry 29:2538?2549. https://doi.org/10.1021/bi00462a016

    Article  CAS  PubMed  Google Scholar 

  25. Lipscomb LA, Peek ME, Zhou FX et al (1994) Water Ring structure at DNA interfaces: Hydration and Dynamics of DNA-Anthracycline complexes. Biochemistry 33:3649?3659. https://doi.org/10.1021/bi00178a023

    Article  CAS  PubMed  Google Scholar 

  26. Zunino F, Gambetta R, Di Marco A et al (1977) The interaction of adriamycin and its beta anomer with DNA. Biochim Biophys Acta 476:38?46

    Article  CAS  PubMed  Google Scholar 

  27. Cullinane C, Phillips DR (1990) Induction of stable transcriptional blockage sites by adriamycin: GpC specificity of apparent adriamycin-DNA adducts and dependence on Iron(III) ions. Biochemistry 29:5638?5646. https://doi.org/10.1021/bi00475a032

    Article  CAS  PubMed  Google Scholar 

  28. Wang J, Ozsoz M, Cai X et al (1998) Interactions of antitumor drug daunomycin with DNA in solution and at the surface. Bioelectrochem Bioenerg. https://doi.org/10.1016/S0302-4598(98)00075-0

    Article  Google Scholar 

  29. Chehreh Chelgani S, Rudolph M, Kratzsch R et al (2016) A review of graphite beneficiation techniques. Min Process Extr Metall Rev 37:58?68. https://doi.org/10.1080/08827508.2015.1115992

    Article  CAS  Google Scholar 

  30. Alipour E, Majidi MR, Saadatirad A et al (2013) Simultaneous determination of dopamine and uric acid in biological samples on the pretreated pencil graphite electrode. Electrochim Acta 91:36?42. https://doi.org/10.1016/j.electacta.2012.12.079

    Article  CAS  Google Scholar 

  31. Aoki K, Okamoto T, Kaneko H et al (1989) Applicability of graphite reinforcement carbon used as the lead of a mechanical pencil to voltammetric electrodes. J Electroanal Chem 263:323?331. https://doi.org/10.1016/0022-0728(89)85102-2

    Article  CAS  Google Scholar 

  32. Mirceski V, Gulaboski R, Lovric M et al (2013) Square-wave voltammetry: a review on the recent progress. Electroanalysis 25:2411?2422

    Article  CAS  Google Scholar 

  33. Alhadeff Eand Bojorge N (2011) ?Graphite-composites alternatives for electrochemical biosensor.? In metal, ceramic and polymeric composites for various uses. Intech Open, London

    Google Scholar 

  34. Tanzi MC, Farè S, Candiani G (2019) Chapter 1-Organization, structure, and properties of materials. Foundations of biomaterials engineering 10

  35. David IG, Popa DE, Buleandra M (2017) Pencil graphite electrodes: a versatile tool in electroanalysis. J Anal Methods Chem. https://doi.org/10.1155/2017/1905968

    Article  PubMed  PubMed Central  Google Scholar 

  36. Congur G, Eksin E, Erdem A (2019) Sensing and bio-sensing research chitosan modified graphite electrodes developed for electrochemical monitoring of interaction between daunorubicin and DNA. Sens Bio-Sens Res 22:100255. https://doi.org/10.1016/j.sbsr.2018.100255

    Article  Google Scholar 

  37. Congur G, Eksin E, Mese F, Erdem A (2014) Sensors and actuators B: chemical succinamic acid functionalized PAMAM dendrimer modified pencil graphite electrodes for voltammetric and impedimetric DNA analysis. Sens Actuators B Chem 201:59?64. https://doi.org/10.1016/j.snb.2014.03.104

    Article  CAS  Google Scholar 

  38. Mehdi M, Jahani S (2022) Investigation of a high-sensitive electrochemical DNA biosensor for determination of Idarubicin and studies of DNA-binding properties. Microchem J 179:107546. https://doi.org/10.1016/j.microc.2022.107546

    Article  CAS  Google Scholar 

  39. Kuralay F, Bayramlı Y (2021) Electrochemical determination of Mitomycin C and its Interaction with double-stranded DNA using a poly (o -phenylenediamine) -Multi-Walled Carbon Nanotube Modified Pencil Graphite Electrode Electrochemical determination of Mitomycin C and. Anal Lett 54:1295?1308. https://doi.org/10.1080/00032719.2020.1801710

    Article  CAS  Google Scholar 

  40. Kesici E, Eksin E, Erdem A (2018) An impedimetric biosensor based on ionic liquid-modified graphite electrodes developed for microRNA-34a detection. Sens (Switzerland). https://doi.org/10.3390/s18092868

    Article  Google Scholar 

  41. Akpınar F, Şensoy KG, Muti M (2023) Electrochemical determination of dexrazoxane by Differential Pulse Voltammetry (DPV) using a Graphene Oxide Nanosheet Modified Pencil Graphite Electrode (PGE) Electrochemical determination of dexrazoxane by Differential Pulse Voltammetry (DPV) using a Graphene. Anal Lett 56:630?642. https://doi.org/10.1080/00032719.2022.2095567

    Article  CAS  Google Scholar 

  42. Moustakim H, Mohammadi H, Amine A (2022) Electrochemical DNA Biosensor Based on Immobilization of a Non-Modified ssDNA Using Phosphoramidate-Bonding Strategy and Pencil Graphite Electrode Modified with AuNPs/CB and Self-Assembled Cysteamine Monolayer. Sensors 22(23):9420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nohwal B, Chaudhary R, Pundir CS (2020) Amperometric L -lysine determination biosensor ampli fi ed with L -lysine oxidase nanoparticles and graphene oxide nanoparticles. Process Biochem 97:57?63. https://doi.org/10.1016/j.procbio.2020.06.011

    Article  CAS  Google Scholar 

  44. Jahandari S, Ali M, Karimi-maleh H, Khodadadi A (2019) A powerful DNA-based voltammetric biosensor modified with au nanoparticles, for the determination of Temodal ; an electrochemical and docking investigation. J Electroanal Chem 840:313?318. https://doi.org/10.1016/j.jelechem.2019.03.049

    Article  CAS  Google Scholar 

  45. Muti M, Muti M (2018) Electrochemical monitoring of the interaction between anticancer drug and DNA in the presence of antioxidant. Talanta 178:1033?1039. https://doi.org/10.1016/j.talanta.2017.08.089

    Article  CAS  PubMed  Google Scholar 

  46. Tugce Y, Akbal Ö, Bolat G et al (2018) Biosensors and bioelectronics peptide nanoparticles (PNPs) modi fi ed disposable platform for sensitive electrochemical cytosensing of DLD-1 cancer cells. Biosens Bioelectron 104:50?57. https://doi.org/10.1016/j.bios.2017.12.039

    Article  CAS  Google Scholar 

  47. Kanat E, Eksin E, Karacicek B, Erac Y (2018) Electrochemical detection of interaction between dacarbazine and nucleic acids in comparison to agarose gel electrophoresis. Anal Biochem. https://doi.org/10.1002/elan.201800064

    Article  Google Scholar 

  48. Heydari-bafrooei E, Amini M, Saeednia S (2017) Electrochemical detection of DNA damage induced by bleomycin in the presence of metal ions. J Electroanal Chem 803:104?110. https://doi.org/10.1016/j.jelechem.2017.09.031

    Article  CAS  Google Scholar 

  49. Taei M, Salavati H, Hasanpour F, Shafiei A (2015) Biosensor based on ds-DNA-decorated Fe 2 O 3/SnO 2-chitosan modified multiwalled carbon nanotubes for biodetection of doxorubicin. IEEE Sensors Journal 16(1):24–31

    Article  Google Scholar 

  50. Zhao J, Hu GZ, Yang ZS, Zhou YY (2007) Determination of 1-naphthol with denatured DNA-modified pretreated glassy carbon electrode. Anal Lett 40:459?470. https://doi.org/10.1080/00032710600964759

    Article  CAS  Google Scholar 

  51. Topkaya SN, Ozyurt VH, Cetin AE, Otles S (2018) Nitration of tyrosine and its effect on DNA hybridization. Biosens Bioelectron 102:464?469. https://doi.org/10.1016/j.bios.2017.11.061

    Article  CAS  PubMed  Google Scholar 

  52. Erdem A, Muti M, Papakonstantinou P et al (2012) Graphene oxide integrated sensor for electrochemical monitoring of mitomycin C-DNA interaction. Analyst 137:2129?2135. https://doi.org/10.1039/c2an16011k

    Article  CAS  PubMed  Google Scholar 

  53. Oliveira-Brett AM, Vivan M, Fernandes IR, Piedade JAP (2002) Electrochemical detection of in situ adriamycin oxidative damage to DNA. Talanta 56:959?970. https://doi.org/10.1016/S0039-9140(01)00656-7

    Article  CAS  PubMed  Google Scholar 

  54. Erdem A, Karadeniz H, Caliskan A (2009) Single-walled carbon nanotubes modified graphite electrodes for electrochemical monitoring of nucleic acids and biomolecular interactions. An Int J Devoted to Fundam Pract Asp Electroanal 21:464?471. https://doi.org/10.1002/elan.200804422

    Article  CAS  Google Scholar 

  55. Vacek J (2009) Ex situ voltammetry and chronopotentiometry of Doxorubicin at a pyrolytic Graphite Electrode: Redox and Catalytic Properties and Analytical Applications. Electroanal An Int J Devoted to Fundam Pract Asp Electroanal 21:2139?2144. https://doi.org/10.1002/elan.200904646

    Article  CAS  Google Scholar 

  56. Hynek D, Krejcova L, Zitka O et al (2012) Electrochemical study of doxorubicin interaction with different sequences of double stranded oligonucleotides, part II. Int J Electrochem Sci 7:34?49

    Article  CAS  Google Scholar 

  57. Wong ELS, Gooding JJ (2007) The Electrochemical monitoring of the perturbation of charge transfer through DNA by Cisplatin. J Am Chem Soc 129:8950?8951

    Article  CAS  PubMed  Google Scholar 

  58. Hmoud Alotaibi S, Abdalla Momen A (2019) Anticancer drugs? deoxyribonucleic acid (DNA) interactions. Biophys Chem - Adv Appl. https://doi.org/10.5772/intechopen.85794

    Article  Google Scholar 

  59. Pwavodi PC, Ozyurt VH, Asir S, Ozsoz M (2021) Electrochemical sensor for determination of various phenolic compounds in wine samples using Fe3O4 nanoparticles modified carbon paste electrode. Micromachines 12(3):312

    Article  PubMed  PubMed Central  Google Scholar 

  60. Eksin E, Karadeniz H, Erdem A (2015) Voltammetric and impidimetric detection of Anticancer Drug Mitomycin C and DNA Interaction by using Carbon Nanotubes Modified Electrodes. Curr Bionanotechnol 1:32?36. https://doi.org/10.2174/2213529401666150218194827

    Article  Google Scholar 

  61. Zhang K YZ (2010) Electrochemical behavior of adriamycin at an electrode modified with silver nanoparticles and multi-walled carbon nanotubes, and its application. Microchim Acta 169:161?165

    Article  CAS  Google Scholar 

  62. Soleymani J, Hasanzadeh M, shadjou N, Jafari MK, Gharamaleki JV, AJ (2016) A new kinetic-mechanistic approach to elucidate electrooxidation of doxorubicin hydrochloride in unprocessed human fluids using magnetic graphene based nanocomposite modified glassy carbon electrode. Mat Sci Eng C 61:638?650

    Article  CAS  Google Scholar 

  63. Chaney EN RPB (1982) Electrochemical determination of adriamycin compounds in urine by preconcentration at carbon paste electrodes. Anal Chem 54:2556?2560

    Article  CAS  PubMed  Google Scholar 

  64. Baldwin RP, Packett D TMW (1981) Electrochemical behavior of adriamycin at carbon paste electrodes. Anal Chem 53:540?542

    Article  CAS  Google Scholar 

  65. Evtugyn G, Porfireva A, Stepanova V HB (2015) Electrochemical Biosensors based on native DNA and Nanosized Mediator for the detection of Anthracycline Preparations. Electroanalysis 27:629?637

    Article  CAS  Google Scholar 

  66. Hashemzadeh N, Hasanzadeh M, Shadjou N, Eivazi-Ziaei J, Khoubnasabjafari M AJ (2016) Graphene quantum dot modified glassy carbon electrode for the determination of doxorubicin hydrochloride in human plasma. J Pharm Anal 6:235?241

    Article  PubMed  PubMed Central  Google Scholar 

  67. Hajian R, Tayebi Z, Shams N (2017) Fabrication of an electrochemical sensor for determination of doxorubicin in human plasma and its interaction with DNA. J Pharm Anal 7:27?33. https://doi.org/10.1016/j.jpha.2016.07.005

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The contributions of Professor Dr. Mehmet Ozsoz supported this work.

Funding

The author has no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pwadubashiyi Coston Pwavodi.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher?s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pwavodi, P.C. Voltammetric and impedimetric analysis of adriamycin and fish sperm DNA interaction using pencil graphite electrodes. J Appl Electrochem 53, 2025–2037 (2023). https://doi.org/10.1007/s10800-023-01897-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-023-01897-w

Keywords

Navigation